ESTRUTURAS ESPACIAIS DE ELEMENTOS PRÉ-MOLDADOS DELGADOS DE CONCRETO

PEDRO WELLINGTON GONÇALVES DO NASCIMENTO TEIXEIRA

Dissertação apresentada à Escola de Engenharia de São Carlos, da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Mestre em Engenharia de Estruturas.

ORIENTADOR: Prof. Dr. João Bento de Hanai

São Carlos
1994
FOLHA DE APROVAÇÃO

Dissertação defendida e aprovada em 28/10/1994
pela Comissão Julgadora:

Prof. Dr. JOÃO BENTO DE HANAI - Orientador
(Escola de Engenharia de São Carlos - USP)

Prof. Dr. ROBERTO LUIZ DE ARRUDA BARBATO
(Escola de Engenharia de São Carlos - USP)

Prof. Dr. ISAÍAS VIZOTTO
(Universidade Estadual de Campinas - UNICAMP)

Presidente da CPG
Prof. Dr. Jurandyr Povinelli

Coordenador da Área
Prof. Dr. Sérgio Persival B. Proença
A meus pais,

pelo apoio sem o qual este trabalho não teria se realizado.
AGRADECIMENTOS

À minha esposa, Ana Amélia, pelos desenhos, pela maquete, e pela paciência com que aceitou as horas de convívio subtraídas.

A João Bento de Hanai, meu orientador, que apresentou-me ao mundo das estruturas delgadas e resistentes pela forma.

A Mounir Khalil El Debs, que orientou-me no início deste trabalho, fornecendo muitas informações valiosas referentes às estruturas pré-moldadas.

À Profa. Maria Aparecida G. Ruas, do ICMSC, por esclarecer-me muitas questões de Geometria Diferencial, que, mesmo não estando explícitas neste trabalho, forneceram a base para sua realização.

A Nadir Minatel, competente e dedicada bibliotecária do Departamento de Estruturas da EESC, pelo auxílio na pesquisa bibliográfica.
SUMÁRIO

Resumo... i

Abstract... ii

1. Introdução ... 1
 1.1. Motivações ao trabalho .. 1
 1.2. Objetivos ... 3
 1.3. Apresentação do trabalho .. 3

2. O microconcreto armado ... 5
 2.1. Evolução histórica do material ... 5
 2.2. Surgimento do microconcreto armado ... 7

3. Estruturas em casca ... 11
 3.1. Generalidades ... 11
 3.2. Comportamento estrutural das cascas ... 13
 3.3. Estruturas tipo-casca .. 16

4. Cascas pré-moldadas ... 18
 4.1. Generalidades ... 19
 4.2. Divisão da superfície da casca .. 20
 4.3. Execução dos elementos ... 24
 4.4. Montagem da estrutura .. 29
5. Arcos
5.1. Curvas funiculares
5.2. Análise de arcos
5.3. Análise de arcos pelo Método dos Elementos Finitos

6. Cúpulas
6.1. Membranas curvas
6.2. Análise de cúpulas
6.3. Análise de cascas pelo Método dos Elementos Finitos

7. Estudos de caso
7.1. Projeto I
7.2. Projeto II

8. Comentários Finais
8.1. Aspectos construtivos
8.2. Aspectos relacionados à durabilidade da estrutura
8.3. Aspectos estruturais
8.4. Aspectos relacionados à forma dos elementos

Anexo

Bibliografia
Resumo

O concreto é um material adequado para moldagem de estruturas em forma de superfície curva, que podem apresentar um eficiente comportamento estrutural e fornecer assim grande economia de materiais. Os atuais métodos de produção de estruturas de concreto armado, no entanto, não têm sido postos em favor da construção de estruturas com essas características, ao contrário do que acontecia nas primeiras décadas após o surgimento deste material na Construção Civil. Apresenta-se neste trabalho uma revisão dos aspectos relacionados ao projeto de cascas e estruturas de comportamento semelhante, com ênfase à aplicação da pré-moldagem como alternativa construtiva para essas estruturas. São feitas análises de dois projetos representativos do tema. Procura-se reunir dados suficientes para futuras aplicações de sistemas estruturais semelhantes que possam ser produzidos com uso de concreto de granulometria fina, ou microconcreto armado, um material adequado para moldagem de elementos estruturais de pequena espessura.

Palavras-chave: Concreto; Pré-moldados; Cascas.
Abstract

Concrete is a suitable material for casting thin-walled spatial structures that may perform an efficient structural behaviour and thus providing great saving of materials. Nowadays the concrete construction technology is not being used to achieve such structures in the same way of early ages of this material. In this work some aspects of design of shell and shell-like structures are discussed. Precasting techniques are emphasized as an alternative for their erection. Two representative structures are analysed. The collected data may be used in future applications of similar structural systems preferentially by use of fine grained concrete which is seen as an adequate material for casting thin-walled structural elements.

Keywords: Concrete; Precast; Shell.
1. Introdução

Este trabalho faz parte de um plano de pesquisa mais amplo que visa avaliar o potencial de aplicação de elementos pré-moldados delgados na Construção Civil, tratando principalmente da utilização desses elementos para formar coberturas.

O tema, devido à sua natureza bastante ampla, é abordado sob a forma de estudos de caso feitos sobre obras específicas projetadas com a mesma filosofia da sua proposta. Procura-se com isso levantar dados que possam promover o desenvolvimento de projetos e processos de construção de algumas soluções representativas de um campo de aplicação possivelmente maior.

1.1. Motivações ao trabalho

Projetar estruturas para coberturas é uma tarefa que tem motivado engenheiros e arquitetos por todo o mundo a desenvolver sistemas estruturais que consumam pouca quantidade de materiais e que, portanto, apresentem baixo peso. O mínimo consumo de materiais é conseguido projetando-se estruturas em que todos os elementos ou pelo menos a maior parte deles esteja solicitada por esforços normais.

Com o surgimento do concreto armado as estruturas em casca, feitas com este material, assumiram grande importância entre os sistemas estruturais para coberturas. As cascas de concreto armado combinam as funções portante e de
vedação e apresentam comportamento estrutural que permite bom aproveitamento dos materiais. Além disso são formadas por um material que permite ser moldado em qualquer forma de maneira relativamente simples e a um baixo custo.

A primeira casca de concreto armado foi a cúpula de Jena, construída em 1923 na Alemanha. A estrutura tinha 25 m de diâmetro e uma espessura de apenas 60,3 mm. Para sua construção foi usada uma forma sobre cimbramento móvel. O material empregado foi o “ferro-cimento”, que foi projetado sobre a armadura já posicionada, utilizando-se a forma como anteparo (HANAI, 1992). Um grande número de outras formas de casca se desenvolveu e foi construído a partir de então.

Mas, de acordo com BILLINGTON (1982), a partir da década de 60 bem menos cascas em concreto armado foram construídas por todo o mundo. Os problemas associados à construção dessas formas estruturais — como o alto custo final devido às formas trabalhosas e à morosidade do processo construtivo — fizeram diminuir o entusiasmo inicial dos projetistas.

Frente a isso é notório atualmente o empenho de vários pesquisadores (SCHLAICH (1986), KHAIDUKOV (1986)) com relação a retomar a aplicação de concreto armado em estruturas em casca. Dois aspectos podem ser apontados como de grande importância neste empreendimento. Primeiro o desenvolvimento de concretos que viabilizem a moldagem de estruturas ou elementos estruturais delgados. Podem-se citar como exemplos a argamassa armada ou o concreto armado com adição de fibras. Ou ainda, o concreto de granulometria fina, microconcreto, que pode ser reforçado com armaduras contínuas — telas, fios ou barras de aço — combinadas com fibras metálicas, fibra de vidro ou fibras de polipropileno, entre outras. O segundo aspecto é o desenvolvimento de novas formas estruturais associado ao desenvolvimento de métodos construtivos que possibilitem a realização dessas formas de maneira racional.

O microconcreto armado é um material com grande potencial de aplicação nesse campo. A possibilidade do uso desse material em estruturas com algumas características das cascas de concreto armado e o uso da pré-moldagem como alternativa construtiva são as principais motivações a este trabalho.
1.2. Objetivos

O objetivo principal deste trabalho é levantar dados que possam auxiliar futuras aplicações de algumas soluções estruturais. Tendo em vista sua natureza, o trabalho foi limitado a:

— realizar uma pesquisa bibliográfica sobre a aplicação da pré-moldagem em cascas e estruturas de comportamento semelhante;

— realizar uma pesquisa bibliográfica sobre os modelos numéricos que representam o comportamento estático, em regime elástico linear, de algumas estruturas representativas do tema, bem como dos métodos disponíveis para solucionar estes modelos;

— efetuar análises estáticas de algumas estruturas representativas do tema para obter a resposta dessas estruturas a diversos tipos de ações.

1.3. Apresentação do trabalho

No capítulo 2 apresentam-se de maneira sucinta as idéias básicas relacionadas ao desenvolvimento do microconcreto armado. São descritas as relações existentes entre este material e a argamassa armada, bem como as características que o tornam um material com um grande potencial de aplicação a ser explorado.

No capítulo 3 é apresentada a classificação das cascas, e tratam-se de alguns conceitos relativos ao comportamento dessas estruturas.

No capítulo 4 são apresentados alguns aspectos da aplicação da pré-moldagem para formar estruturas em casca e estruturas “tipo-casca”, isto é com forma e comportamento estrutural semelhantes àqueles apresentados pelas cascas. Procurou-se, com base na bibliografia pesquisada, reunir dados relevantes sobre as várias etapas de produção dessas estruturas.

No capítulo 5 são descritos os métodos teóricos empregados para a análise de arcos. Apresenta-se o modelo físico que reproduz de maneira parcial
o comportamento estático dessas estruturas, que é a curva funicular, devido à grande utilidade que este modelo oferece tanto para o projeto como para a análise de arcos. As expressões para análise de arcos pelos processos clássicos são relacionadas, com ênfase aos arcos com duas articulações e de eixo parabólico. Comentam-se também alguns conceitos úteis para modelagem de arcos esbeltos com programas baseados no Método dos Elementos Finitos. O mesmo tratamento é dado às cúpulas em casca esbelta, cujos métodos teóricos de análise são descritos no capítulo 6.

Resultados de aplicações dos métodos descritos são apresentados no capítulo 7. Como exemplo para essas aplicações foram tomadas duas estruturas projetadas por Pier Luigi Nervi (1891–1979) para coberturas de áreas com dimensões da ordem de 60m, as quais foram feitas com elementos pré-moldados de argamassa armada. Como nem todos os dados sobre as estruturas foram encontrados na bibliografia pesquisada, algumas das dimensões dos elementos, e também da estrutura, foram adotados. No entanto, as dimensões adotadas não alteram de maneira significativa a forma original das estruturas e de seus elementos. Convém lembrar também que nas análises efetuadas neste trabalho, o efeito das ligações sobre os esforços, ou mesmo o comportamento dessas ligações, não é considerado. A forma dos elementos, bem como a maneira como foram unidos, é considerada apenas do ponto de vista de sua execução.

Por fim, no capítulo 8, são feitos comentários sobre as vantagens de se retomar o projeto de estruturas semelhantes àquelas realizadas por Nervi através do uso do microconcreto armado.
2. O microconcreto armado.

Por microconcreto armado entende-se um concreto produzido com agregado de granulometria fina que pode ser reforçado com armaduras contínuas e descontínuas, combinadas. Trata-se portanto de um material da "família dos concretos", obtido fazendo-se variar as características da matriz e a taxa de armadura entre os limites usuais da argamassa armada e do concreto armado (Figura1).

As características mecânicas do microconcreto armado, principalmente com o uso combinado de armaduras contínuas e descontínuas, ainda são objeto de estudo. A pesquisa e determinação de suas propriedades tornam-se importantes devido a certos aspectos discutidos adiante, neste capítulo.

Para melhor entender o interesse em se estudar tal material, é importante conhecer um pouco da história da argamassa armada.

2.1. Evolução histórica do material

A origem da argamassa armada se deu em 1848 quando Joseph-Louis Lambot desenvolveu na França um material que denominou como "fer-ciment" e descrevia como uma rede de arames ou barras metálicas cimentadas com cimento hidráulico de maneira a formar vigas e pranchas. Esse material teria ascendência direta sobre a moderna argamassa armada e mais ainda sobre toda a família dos concretos estruturais. Contudo a argamassa armada ficaria restrita a
aplicações esparsas e de pequena importância tecnológica ao longo de quase 100 anos, até a contribuição marcante de Nervi, como relata HANAI (1992).

NERVI (1956), afirma que a ideia básica por trás do seu “ferro-cimento” é o fato do concreto armado poder experimentar grandes deformações nas vizinhanças da armadura, sendo a grandeza dessas deformações dependente da distribuição e subdivisão da armadura por toda a massa de concreto. Tomando isso como ponto de partida, Nervi começou a investigar o comportamento de lajes bastante esbeltas em que a proporção e subdivisão da armadura fosse aumentada para um máximo através da superposição de várias camadas de malhas de aço bem finas envolvidas com argamassa.

A conclusão a que chegou foi que o material assim criado não se comportava como o concreto armado comum, mas apresentava todas as características mecânicas de um material homogêneo. As propriedades mais importantes do novo material seriam: a) ele poderia resistir a grandes deformações sem a formação de fissuras na argamassa, como consequência da subdivisão da armadura, e b) haveria eliminação das fôrmas, já que a argamassa poderia ser aplicada diretamente à malha, capaz de retê-la.

Com este material, Nervi realizou um grande número de aplicações, não só no campo da Construção Civil, mas também na Construção Naval.

Em nosso país, o “ferro-cimento” foi empregado pela primeira vez no início da década de 60, na Escola de Engenharia de São Carlos da Universidade de São Paulo. Os introdutores do material no Brasil, Pof. Frederico Schiel e Prof. Dante Martinelli, procuraram reelaborar a técnica construtiva, adaptando-a às possibilidades locais, quer quanto ao processo de execução, quer quanto a baratear o custo do material, reduzindo o consumo de cimento e pesquisando uma mínima taxa de armadura que ainda desse ao material elevada resistência à fissuração. Os primeiros ensaios em perfis pré-moldados assinalaram a formação de fissuras com deformações da ordem de 1/1000, com taxas de armadura compreendidas entre 250 e 300 kg/m³ de material e consumo de cimento de cerca de 700 kg/m³ contra os valores de 500 kg/m³ e 1000 kg/m³, respectivamente, das aplicações de Nervi (HANAI, 1992).
Essas adequações tecnológicas de redução de consumo de cimento e de armadura diferenciavam a argamassa armada, como ficou conhecido o material, do “ferro-cimento” de Nervi, embora segundo HANAI (1992), sejam essencialmente o mesmo material e façam parte da família dos concretos estruturais. Nessa “família” a argamassa armada poderia ser diferenciada do concreto armado por algumas particularidades: pequenas espessuras das peças (máxima espessura convencional de 40mm); pequenos valores de cobrimento da armadura (4 a 6mm); qualidade da argamassa (máximo fator água/cimento de 0,45 e dimensão máxima do agregado, em geral, de 4,8mm); emprego de telas de aço soldadas, tecidas ou de metal expandido, com aberturas limitadas; e controle de execução mais rigoroso, principalmente com relação às espessuras e cobrimentos.

2.2. Surgimento do microconcreto armado

A argamassa armada pode então ser vista como um tipo de concreto armado com algumas particularidades. Esses materiais poderiam ser agrupados com outros sob a definição de “associação de conglomerado cimentício e um reforço” (EL DEBS, 1992)*. Desmembrando a definição teríamos o conglomerado cimentício como o concreto simples, a argamassa, o concreto leve, etc., e os reforços, que podem ser contínuos tais como fios, barras e telas de aço, ou descontínuos, como as fibras. O concreto protendido também pertence a esse grupo como um concreto armado em cujas estruturas existe um sistema permanente de forças aplicadas. Na Figura 1 é apresentada a “família dos concretos” com reforço contínuo, a fim de ilustrar o que foi dito.

Variando-se algumas das características dentre as que fazem a diferença entre esses materiais, surgem associações com características intermediárias entre aquelas que os identificam. As situações intermediárias entre os concretos armado e protendido são obtidas fazendo-se variar o grau de protensão. As associações intermediárias entre o concreto armado e a argamassa armada são obtidas variando-se algumas características como: espessura dos elementos, cobrimento da

armadura, espaçamento dos fios da armadura, qualidade da matriz e controle de execução.

Essas últimas associações ainda não tem sido muito exploradas. Mas são justamente elas, ou as possibilidades de explorá-las, que receberão nossa atenção, por julgar-se que tenham grande interesse.

FIGURA 1 - Família dos concretos com reforço contínuo
Comentando-se as diferenças entre a argamassa armada e o “ferro-cemento” de Nervi, foram apontados os menores consumos de cimento e de armadura do primeiro. Diminuindo-se ainda mais a quantidade de telas, isto é, usando-se telas com maiores aberturas que as especificadas para a argamassa armada, aumentando-se o cobrimento dado à armadura — em função do fator água/cimento — e utilizando-se um agregado com dimensão máxima maior que 4,8mm, poder-se-ia chegar a um “novo material” que apresente algumas vantagens em relação à argamassa armada, conservando alguma de suas qualidades desejáveis.

Esse material é o que se denomina aqui de microconcreto armado. Devido a suas características o microconcreto seria adequado para confecção de estruturas com elementos de pequena espessura, levando esse fator a identificá-lo. Na verdade deve-se falar em peças de microconcreto armado, cujas espessuras estariam situadas desde os limites convencionais da argamassa armada (20-60mm) até o limite inferior do concreto armado ou pretendido (80mm).

Podem-se dividir em dois grupos as vantagens que se teria em explorar tais limites, relacionando-as à técnica construtiva das peças e às características do material.

A técnica construtiva poderia ser facilitada ao diminuir-se o rigoroso controle necessário para a execução de peças de argamassa armada. A execução de tais peças, devido às suas exigências de consumo de grande quantidade de telas, requer muita mão-de-obra. O mesmo vale para as pequenas espessuras e os pequenos cobrimentos a serem dados, ambos de difícil controle. Até mesmo em relação ao concreto armado a execução das peças seria simplificada devido à não utilização de estribos que, dependendo em alguns casos da forma do elemento, podem ser substituídos por telas dimensionadas para resistir ao cisalhamento por força cortante.

Logicamente deve-se reconhecer que a utilização de um ou de outro material é condicionada por outros aspectos como os requisitos funcionais da construção e a disponibilidade tecnológica local. Na verdade essas vantagens construtivas apresentadas podem não refletir a realidade, dependendo do projeto e do local onde o mesmo será realizado.
As peças de microconcreto seriam também bastante adequadas para a pré-moldagem já que este material possibilitaria a execução de elementos leves, embora isso não deva ser visto como um paradigma para o material.

Com relação às características do material podem-se ganhar com o maior cobrimento — e também com a maior garantia de execução deste cobrimento — maior proteção para a armadura e assim maior durabilidade, aspecto que pode comprometer as peças de argamassa armada. Há portanto que se estudar se tal fato seria confirmado de maneira significativa.

O que fica claro é que há um campo a ser explorado: as situações intermediárias entre a argamassa armada e o concreto armado, podendo-se obter um material, o microconcreto armado, com algumas características de cada material que lhe deu origem, de maneira a conduzir a peças com boa durabilidade e execução viável.
3. Estruturas em casca.

3.1. Generalidades

Cascas são estruturas em forma de superfície ou combinação de superfícies curvas, com espessura pequena se comparada com suas outras dimensões.

A classificação mais geral das cascas é feita pela curvatura gaussiana de sua superfície média. A curvatura gaussiana é definida em geometria diferencial como o produto das curvaturas principais de uma superfície (Figura 2). Dessa maneira, tem-se: (a) as cascas de curvatura gaussiana positiva, como as cúpulas e os parabolóides elípticos, também denominados de cascas sinclásticas, formadas por duas famílias de curvas com a mesma direção; (b) cascas de curvatura gaussiana nula como os cones e os cilindros, formadas por uma família de curvas apenas; (c) cascas de curvatura gaussiana negativa, ou cascas anticlásticas, formadas por duas famílias de curvas, em direções diferentes, como os hiperbolóides de revolução ou os parabolóides hiperbólicos (BILLINGTON, 1982).

Uma diferença importante entre esses tipos de cascas é a propagação de efeitos de borda por sua superfície. Efeitos de borda são os esforços e deslocamentos que ações aplicadas nas bordas da casca produzem em sua superfície. Em cascas de curvatura gaussiana positiva, estes efeitos tendem a ser amortecidos rapidamente e, geralmente, são confinados a uma estreita zona próxima às bordas da estrutura. Cascas de curvatura gaussiana nula também tendem a amortecer os efeitos
de borda, mas estes propagam-se mais que nas cascas de curvatura gaussiana positiva. Por fim, em cascas anticlásticas o amortecimento é marcadamente menor que nas outras, e assim os efeitos de borda tornam-se significantes em uma grande extensão de sua superfície (BILLINGTON, 1982).

FIGURA 2 - Definição de curvatura

Uma segunda classificação das cascas divide-as em sistemas de revolução e de translação. As cascas de revolução são aquelas cuja superfície média é gerada pela rotação de uma curva plana em torno de um eixo situado no mesmo plano, chamado eixo de revolução, como as cúpulas. As cascas de translação seriam geradas através da translação de uma curva sobre outra curva, como uma casca cilíndrica. Com respeito ao comportamento estrutural essa classificação tem pouco interesse, sendo mais importante para ajudar a visualização da estrutura.

Em 1980, o engenheiro suíço Heinz Isler apresentou uma nova classificação para as cascas baseada no procedimento usado para definir sua superfície, mostrada na Tabela 1 (BILLINGTON, 1982).

A classificação apresentada por Isler é devida às suas propostas de novas formas de cascas com geometria definida em função de condições estruturais. Segundo BILLINGTON (1982), Isler foi motivado principalmente pelo desejo de libertar-se das restrições de formas impostas pelas cascas definidas matematicamente ao desenvolver estas novas formas de cascas.
TABELA 1 - Classificação das cascas segundo Isler

<table>
<thead>
<tr>
<th>Tipo de casca</th>
<th>Exemplos</th>
<th>Método de definição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escultural</td>
<td>Simulação de formas na natureza, formas livremente esculpidas, e formas</td>
<td>Arbitrário</td>
</tr>
<tr>
<td></td>
<td>geométricas ou estruturais usadas mais decorativamente que estruturalmente</td>
<td></td>
</tr>
<tr>
<td>Geométrica</td>
<td>Cilindros, esferas, cones, parabolóides hiperbólicos, parabolóides elípticos e outros</td>
<td>Fórmulas matemáticas</td>
</tr>
<tr>
<td>Estrutural</td>
<td>Membranas em tração, membranas pneumáticas, fluxo de fluido viscoso e membranas suspensas invertidas</td>
<td>Analogia física</td>
</tr>
</tbody>
</table>

3.2. Comportamento estrutural das cascas

O comportamento estrutural das cascas combina a capacidade resistente de chapa ou membrana, esforços normais e tangenciais resultantes de tensões uniformemente distribuídas ao longo da espessura, com a capacidade resistente de placa, esforços de flexão e torção resultantes de tensões não uniformes ao longo da espessura. Em projetos de cascas procura-se adaptar sua forma e condições de apoio de modo a fazer com que o comportamento resistente de membrana prepondera sobre o de placa, pelo menos na maior parte da estrutura, obtendo-se assim o denominado estado de tensões de membrana.

As razões para isso são que as cascas resistem melhor a esforços de membrana que de flexão (principalmente a esforços de compressão no caso das cascas de concreto armado) e, além disso, há um motivo de ordem prática, já que o estado de tensões de membrana permite um cálculo estático bem mais simples (LEONHARDT, 1977). Um outro motivo é que o estado de tensões de membrana corresponde a uma utilização mais eficiente dos materiais.
A importância de se conseguir uma estrutura com comportamento de membrana pode ser ilustrada de maneira simples por meio de uma analogia entre uma casca e uma estrutura reticulada. As estruturas reticuladas podem apresentar, nas seções transversais de seus elementos, esforços resultantes de tensões distribuídas de maneira não-uniforme ou esforços resultantes de tensões distribuídas de maneira uniforme. Estes são análogos aos esforços de flexão e de membrana das cascas, com a diferença de atuarem em uma direção apenas.

Dependendo da forma da estrutura, isto é, da disposição de seus elementos, pode-se fazer com que os esforços de flexão não sejam necessários para o equilíbrio. É o caso, por exemplo da estrutura mostrada na Figura 3.b, que ao contrário daquela vista na Figura 3.a, não necessita de esforços de flexão para ter sua estabilidade assegurada.

![Diagramas](a) e (b)

FIGURA 3 - Diferentes arranjos geométricos de uma estrutura reticulada alterando o seu comportamento estrutural (PEARCE, 1978).

A primeira consequência desse comportamento livre de flexão é a simplificação da análise estática, devido ao menor número de esforços internos desconhecidos.

Além disso uma estrutura livre de esforços de flexão consome uma quantidade mínima de material, já que seus esforços internos resultam de tensões
uniformemente distribuídas por toda a seção em que atuam. Isto é, aproveita-se melhor o material utilizado. O mesmo fato pode ser visto de outra maneira: a estrutura livre de flexão consegue se manter estável sob carregamentos de valor mais alto que os suportados por outra estrutura obtida com a mesma quantidade de material, mas cuja forma lhe confere comportamento de flexão. PEARCE (1978) ilustra esse fato com a experiência mostrada à Figura 4.

FIGURA 4 - Teste demonstrando a maior estabilidade de sistemas reticulados triangulados frente a sistemas não triangulados (PEARCE, 1978).

O mínimo consumo de materiais é um aspecto importante. A eficiência de uma estrutura pode, de certa forma, ser avaliada pela quantidade de material por ela utilizado. Porém, a eficiência de um projeto envolve outros aspectos, como o custo final da estrutura ou a energia total gasta em sua realização.
3.3. Estruturas tipo-casca

As cascas são estruturas bastante eficientes. Essa eficiência é devida em parte ao fato de serem estruturas espaciais, mas principalmente ao fato de terem comportamento de membrana. O interesse em aplicá-las em coberturas é ampliado, entre outras coisas, porque as cascas são estruturas que combinam as funções portante e de vedação. Estruturas com algumas das características das cascas podem ter também grande interesse prático.

Como exemplo podem-se citar algumas estruturas espaciais reticuladas e os arcos formados por elementos de seção curva e de parede fina.

As estruturas reticuladas que formam uma superfície no espaço constituindo pórticos ou treliças espaciais, devido às suas características geométricas, têm comportamento estrutural semelhante às cascas. Para essas estruturas podem ser aplicados os mesmos critérios de classificação usados para as cascas. Uma classificação mais detalhada entretanto, deve levar em consideração a malha formada por seus elementos lineares (Figura 5) e pode ser encontrada em MAKOWSKI (1984).

FIGURA 5. Cúpulas reticuladas.

Análises estruturais simplificadas levam em conta essa semelhança, tomando a estrutura como uma superfície definida por seus nós,
utilizando-se portanto de modelos contínuos. Uma análise estrutural mais detalhada, entretanto, apenas é possível com o uso de modelos discretos. Isso é feito, considerando a estrutura como sendo formada por elementos lineares dispostos espacialmente, reproduzindo-se assim sua geometria com mais fidelidade. MAKOWSKI (1984) apresenta a análise de estruturas reticuladas em forma de superfície esférica, com modelos contínuos e discretos.

Arcos formados por elementos de seção curva e parede fina também apresentam semelhança com as cascas, pois são estruturas que combinam funções portante e de vedação. Além disso são solicitados basicamente por esforços de compressão.

Assim as estruturas espaciais reticuladas e os arcos formados por elementos de seção curva e parede fina podem ser denominadas de estruturas tipo-casca, pois ambos apresentam algumas características das estruturas em casca. Dessas características, a mais importante é a capacidade de transmitir as ações aos apoios com pouca flexão. Isso se traduz em utilização mais eficiente dos materiais.
4. Cascas pré-moldadas

A forma curva das cascas, responsável por seu bom desempenho estrutural, pode trazer grandes inconvenientes quando da construção dessas estruturas. CROWLEY (1969) descreve o método mais comumente usado na construção de cúpulas de concreto armado, que consiste em dispor pontaletes de madeira com seção de 10x10cm segundo anéis concêntricos, com diferenças entre os raios de cerca de 2,50m. Em um mesmo anel os pontaletes têm altura constante, porém esta altura aumenta de um mínimo no anel externo até um máximo no anel mais interno. No topo desses pontaletes são colocadas tábuas de 5x30cm, unindo-os segundo os anéis concêntricos. Vigas de 5x10cm espaçadas cerca de 60cm vencem os vão entre as tábuas e apoiam a fórmula da cúpula, constituída por placas que geralmente tem 2,50cm de espessura, sobre a qual é lançado o concreto.

Essa autêntica floresta, como o próprio autor define, requer um grande trabalho para montagem e desmontagem e pode concorrer para a inviabilidade da construção.

Várias alternativas tem sido desenvolvidas para resolver o problema do custo das fórmulas de estruturas de superfície curva. Esses desenvolvimentos incluem, segundo SCHLAICH (1986): padronização e reutilização de fórmulas, uso de elementos pré-moldados, uso de montes de terra como fórmula, uso de estruturas compostas, construção em balanços sucessivos com concreto moldado no local ou concreto pré-moldado e uso de fórmulas infláveis.
Neste trabalho trata-se da possibilidade de utilização de elementos pré-moldados de microconcreto armado, o material descrito no item anterior, na construção de cascas ou estruturas semelhantes.

NERVI (1956), apresenta um grande número de aplicações de “ferro-cemento” para produção dos elementos, obtendo peças mais leves.

Esses trabalhos contêm informações, descritas e comentadas a seguir, que, acredita-se, são importantes para que se possa avaliar o potencial de aplicação do microconcreto armado em sistemas estruturais semelhantes.

4.1. Generalidades

Segundo MAST (1980), as cascas pré-moldadas apresentam as mesmas qualidades das cascas moldadas no local: aparência arquitetônica, durabilidade, economia e bom desempenho estrutural, e suas vantagens podem ser assim resumidas:

— Economia devido à produção em massa;
— Melhor controle de qualidade;
— Redução no tempo da construção;
— Economia de material devido às seções mais finas;
— Possibilidade de uso de elementos pré-tracionados;
— Construção independente de condições ambientais;
— Construção independente de mão-de-obra treinada, no local;
— Economia em cimbramentos.
Os métodos refinados de hoje para adensamento e cura combinados com o uso de pré-tração podem produzir elementos bem mais leves e resistentes que os moldados no local. O problema consiste em como usá-los para tornar a estrutura monolítica. Portanto os problemas associados à pré-moldagem de cascas são, ainda segundo MAST (1980):

— Transporte e manuseio dos elementos;
— Montagem da estrutura;
— Execução das ligações.

Os exemplos encontrados na literatura sobre cascas pré-moldadas utilizam-se geralmente de pré-moldados de canteiro, embora feitos em local apropriado. Elimina-se assim a etapa de transporte dos elementos, da fábrica à obra.

Os problemas relacionados com o manuseio dependem da forma e do tamanho dos elementos, que são decididos no projeto. Elementos menores são mais fáceis de manusear, porém um número muito grande de elementos pode ser incoveniente devido ao grande número de ligações necessárias. Um fator decisivo na escolha do tamanho e forma dos elementos é o tipo do equipamento disponível.

Comentam-se a seguir os aspectos relacionados à execução dos elementos e montagem da estrutura, etapas que geralmente tem maior importância no projeto de estruturas pré-moldadas. Antes disso são apresentados alguns aspectos da divisão de cascas em elementos a serem pré-moldados, que tem grande influência sobre essas duas etapas.

4.2. Divisão da superfície da casca

Um aspecto a ser observado na divisão de uma estrutura em elementos a serem pré-moldados é que se tenha um grande número de elementos idênticos, visando com isso, economia em tipos de fórmas. No caso de cascas de curvatura simples isso é fácil de ser conseguido. Em superfícies de curvatura dupla, no entanto, isso nem sempre é possível.

Além da repetição da geometria dos elementos, deve-se ter em vista aspectos estruturais e construtivos quando da divisão das cascas.
HAAS (1983) cita algumas considerações importantes a respeito da divisão das cascas, que são: (1) procurar fazer a divisão ao longo de linhas retas ou de simetria, para facilitar tanto a fabricação dos elementos como a montagem da estrutura; (2) localizar as linhas de divisão preferencialmente em zonas de compressão e evitar zonas de alto cisalhamento; e (3), evitar nervuras nas bordas dos elementos, pois isso pode disfarçar desvios no alinhamento das peças.

A Figura 6 mostra os seccionamentos mais comumente empregados em cascas cilíndricas e cúpulas.

FIGURA 6. Seccionamento de cascas cilíndricas e cúpulas. As divisões e) e f) diferenciam-se quanto à adoção, ou não, de curvatura nos elementos, respectivamente.

Tomando-se como exemplo uma casca cilíndrica longa, as divisões a) e b) são mais interessantes do ponto de vista estrutural. A divisão c) tem o inconveniente de cortar zonas de tração e compressão, o que pode requerer diferentes tipos de ligação ao longo dos elementos. Além disso as divisões a) e b) produzem elementos de manuseio mais fácil. As três, no entanto, fornecem elementos idênticos.
No caso dos seccionamentos mostrados para as cúpulas, apenas o primeiro tipo (Figura 6.d) proporciona elementos idênticos. Nesta, os cortes são feitos ao longo dos meridianos. Tal divisão pode também apresentar o problema de cortar zonas de tração e compressão. Isso irá depender da relação h/D da estrutura e também das condições de sua borda inferior. A opção de elementos maiores ou menores é, como já se disse, muito influenciada pelo tipo de equipamento de montagem disponível.

Com relação às cascas anticlásticas, quando possível, as retas geratrizas da superfície que as define são usadas como linhas de divisão (Figura 7). Exemplos são encontrados em MAST (1980) e KONCZ (1975).

FIGURA 7. Divisão de casca anticlástica gerada por retas (HAAS, 1983)

No caso dos parabolóides elípticos, o trabalho de ALMEIDA (1982) apresenta com detalhes o assunto.

Algumas vezes a divisão da superfície da casca é conduzida de maneira a desenvolver-se sistemas estruturais baseados em novas formas de cascas, ou melhor, novas abordagens sobre velhas formas. Ilustrando o que foi dito apresenta-se, por exemplo, as coberturas cilíndricas onduladas (Figura 8), formadas de elementos em casca corrugada. Pode-se citar também a estrutura mostrada à Figura 9. Trata-se de uma cúpula que foi dividida em 32 vigas radiais, curvas, sobre
as quais se apoiam elementos de casca também pré-moldados. Essa metodologia de projeto merece atenção especial pois o desenvolvimento de novas formas é apontado por pesquisadores, e também por projetistas, como uma alternativa para o futuro das cascas de concreto armado.

FIGURA 8. Coberturas cilíndricas onduladas feitas com elementos pré-moldados lineares em forma de casca (HAAS, 1983).

FIGURA 9. Cúpula formada por vigas curvas e elementos de casca pré-moldados (MAST, 1980).
4.3. Execução dos elementos

Os custos das fôrmas de cascas moldadas no local podem tornar-se um empecilho para sua construção. Da mesma maneira, nas cascas pré-moldadas as fôrmas dos elementos podem agir contra a economia. Para amenizar problemas relacionados com custos de fôrmas, dois métodos são comumente empregados para a execução dos elementos. O primeiro deles consiste em moldar os elementos uns sobre os outros, enquanto o segundo consiste em utilizar várias fôrmas, ou uma só, que é utilizada para moldar cada elemento separadamente. Apresenta-se a seguir cada um desses dois métodos. Antes disso, porém, são feitos comentários sobre os tipos de elementos.

4.3.1. Tipos de elementos

Existem basicamente dois tipos de elementos utilizados para formar estruturas tipo-casca: os elementos laminares, que podem ser curvos ou planos, e os elementos lineares em forma de casca ou placa dobrada. Estes últimos tem se mostrado, na prática, mais adequados para execução por métodos de produção em massa que os primeiros.

Os elementos lineares em forma de casca são basicamente os elementos HP e as cascas corrugadas. As Tabelas 2 e 3 mostram as dimensões de elementos HP e cascas corrugadas, pré-fabricados, utilizados em alguns países da Europa.

TABELA 2. Elementos HP (HAAS, 1983).

<table>
<thead>
<tr>
<th>País</th>
<th>Seção transversal (mm)</th>
<th>Seção longitudinal (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alemanha Ocidental</td>
<td>![Diagrama]</td>
<td>![Diagrama]</td>
</tr>
<tr>
<td>Rússia</td>
<td>![Diagrama]</td>
<td>![Diagrama]</td>
</tr>
<tr>
<td>Bulgária</td>
<td>![Diagrama]</td>
<td>![Diagrama]</td>
</tr>
</tbody>
</table>

TABELA 3. Cascas corrugadas (HAAS, 1983).

<table>
<thead>
<tr>
<th>Seção Transversal</th>
<th>Vão (m)</th>
<th>Largura (m)</th>
<th>Espessura (mm)</th>
<th>Concreto (m³/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Diagrama]</td>
<td>8</td>
<td>1.12</td>
<td>25 - 40</td>
<td>0.04</td>
</tr>
<tr>
<td>![Diagrama]</td>
<td>9</td>
<td>1.50</td>
<td>35 - 50</td>
<td>0.055</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seção</th>
<th>largura(m)</th>
<th>altura(m)</th>
<th>vão(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>1,25</td>
<td>0,35 - 0,60</td>
<td>15 - 30,0</td>
</tr>
<tr>
<td>Y</td>
<td>2,50</td>
<td>0,61 - 0,91</td>
<td>18 - 25,0</td>
</tr>
<tr>
<td>Shed Y</td>
<td>2,50</td>
<td>0,61 - 0,81</td>
<td>20 - 25,0</td>
</tr>
<tr>
<td>Y com abas</td>
<td>2,50</td>
<td>0,40 - 0,90</td>
<td>9 - 20,0</td>
</tr>
<tr>
<td>HP</td>
<td>2,50- 3,0</td>
<td>0,60 - 0,90</td>
<td>até 30,0</td>
</tr>
</tbody>
</table>
Um desenvolvimento posterior na aplicação desses elementos ocorreu com o uso de vários elementos combinados de maneira a formar arcos paralelos, cobrindo assim vãos maiores (Figura 10).

FIGURA 10. Arco formado a partir de elementos pré-moldados em forma de placa dobrada (HAAS, 1983).

Os elementos laminares são produzidos em uma grande variedade de formas, de acordo com a superfície a ser formada. Mas, como mencionado no início esses elementos são menos adequados para serem executados por métodos de produção em série.

4.3.2. Processos de execução

Conforme comentou-se no início deste item os elementos são executados basicamente por dois processos. No primeiro deles os próprios elementos servem de forma. Este processo é descrito em HAAS (1983), como mostrado a seguir.

Em primeiro lugar deve-se fazer uma matriz rígida com a curvatura desejada para as peças (Figura 11.a). Uma maneira de se fazer a matriz é compactando-se uma camada de solo na forma desejada e cobrindo-a com argamassa ou concreto magro. Em seguida os elementos são moldados uns sobre os outros.
FIGURA 11. Elementos de casca moldados uns sobre os outros.

Duas precauções devem ser tomadas ao se moldar elementos de casca dessa forma. A primeira diz respeito à curvatura dos elementos. Como a superfície superior de uma peça serve de forma para outra, deve-se dar uma pequena variação na espessura \(t \) dessas peças (Figura 11.b) para que se possa manter as curvaturas constantes de elemento para elemento.

A segunda precaução a ser tomada é com relação à adesão entre as peças. Para evitá-la utiliza-se geralmente uma camada de algum material anti-aderente entre os elementos adjacentes. Esse material pode ser:

(a) papel ou folhas de madeira compensada;
(b) Líquidos anti-aderentes como parafina ou alguma pintura plástica;
(c) Uma mistura de argila e cal, aplicada em finas camadas.

Esse material é utilizado quando não se dispõe dos materiais acima citados. É o método mais barato.

Uma aplicação deste método é descrita em HARTMAN (1955), em artigo sobre a primeira casca cilíndrica pré-moldada construída nos EUA. A casca foi dividida em metades, longitudinalmente. Essas seções de concreto foram
moldadas uma no topo da outra mantendo-se o raio de curvatura constante \((r = 30' \sim 9,0m)\), e variando-se a espessura radialmente de 2 1/4" \((\sim 5,7\text{cm})\) na coroa para 2 3/4" \((\sim 7,0\text{cm})\) na borda (Figura 12). Entre as peças foi colocada uma camada de papel. A espessura da peça foi feita variar de maneira significativa para evitar-se vigas de borda na estrutura.

FIGURA 12. Casca cilíndrica pré-moldada dividida longitudinalmente.

O segundo método consiste em reutilização da mesma fórm. Um elemento é executado e após ter adquirido certa resistência é desmoldado e posto em um local adequado para armazenamento, deixando a fórm livre para a moldagem de um novo elemento. Esse método pode em alguns casos ser mais viável que o primeiro, principalmente quando a forma e/ou o tamanho dos elementos não permite que estes sejam moldados em pilhas.

Deve-se dimensionar a quantidade de fórmas a ser utilizada de maneira a se conseguir economia nas operações de moldagem e desmoldagem dos elementos. Um exemplo apresentado em MAST (1980) descreve a construção de uma cobertura composta por 22 cascas cilíndricas em que foi empregado tal método. Cada casca foi pré-moldada como um único elemento, pesando cerca de 40tons (40,6 tf). As fórmas foram feitas de madeira compensada sobre "barrotes" de 5x10 cm, apoiados, por sua vez sobre treliças de madeira paralelas espaçadas cerca de 1,20m.
Para a desmoldagem desses pesados elementos utilizou-se dois guindastes, que também foram usados para a montagem da estrutura. Para garantir que as fôrmas não se movimentariam durante esta operação elas foram parafusadas a uma fundação de concreto feita ao longo de suas bordas. Além disso amarrou-se blocos de concreto às tábuas da fôrma.

As operações de movimentação dos guindastes do local da moldagem dos elementos ao local definitivo da estrutura tiveram que ser consideradas para a determinação do número de fôrmas, além do custo das próprias fôrmas. Se fossem utilizadas apenas duas fôrmas, os guindastes teriam que ser movimentados 11 vezes. Com quatro fôrmas esse número cai para 6 vezes. Usando-se seis fôrmas o número de vezes que se moveriam os equipamentos seria diminuído apenas por uma razão de 6/4, não representando mais uma grande economia. Assim optou-se por quatro fôrmas.

No caso dos elementos lineares em forma de casca ou placa dobrada este segundo método é mais utilizado. As fôrmas são feitas em fábrica onde os elementos são produzidos em grandes quantidades e armazenados.

4.4. Montagem da estrutura

Como os elementos de casca são geralmente bastante esbeltos, eles devem ser presos por vários pontos aos dispositivos externos usados para o seu manuseio. De outra maneira as peças podem sofrer deformações muito grandes durante a montagem da estrutura. A Figura 13 ilustra o que foi dito. A treliça metálica usada como dispositivo externo é parafusada à peça. Para isso vários furos alinhados são feitos na casca. A distância entre esses furos é determinada de acordo com os momentos fletores que o elemento consegue suportar, agindo como laje.

Esta solução, de treliças metálicas parafusadas aos elementos, é adotada em vários dos exemplos encontrados na bibliografia pesquisada. Este procedimento pode ser muito trabalhoso, no entanto é necessário, principalmente em peças muito flexíveis. Em casos extremos, peças muito grandes, a treliça deve ser unida à peça por muitos pontos.
FIGURA 13. Dispositivos para manuseio de elementos delgados: (a) elementos de casca cilíndrica; (b) elementos de cúpula elíptica.

Em um exemplo descrito por MAST (1980), os elementos de uma casca cilíndrica seccionada longitudinalmente tinham cerca de 50m de comprimento e apenas 7,5cm de espessura. Para a montagem da estrutura os elementos foram parafusados a treliças metálicas com aproximadamente seu comprimento. Essas treliças permaneciam ligadas aos elementos já posicionados por todo um dia, até as ligações terem atingido a resistência necessária.

Dispositivos convencionais como laços unidos a balancins são adotados apenas quando a peça tem rigidez mais elevada, seja pela sua forma, seja por estar ligada a elementos rígidos de borda.

Um artifício empregado em vários projetos de cascas pré-moldadas consiste em usar um equipamento de vácuo para manuseio das peças. Consegue-se assim distribuir de maneira uniforme os esforços na peça e não há necessidade de serem feitos furos em sua superfície.

Outro aspecto importante relacionado à montagem da estrutura é a execução das ligações entre os elementos. Quatro métodos são comumente empregados para executá-las:

- concretagem local da ligação e soldagem ou união por traspasse da armadura deixada à mostra nas peças;
— uso de armaduras pós-tracionadas;
— uso de conectores metálicos soldados ou parafusados que transmitem todas as forças na ligação;
— uso de elementos pré-moldados de seção parcial, formando uma estrutura composta.

O primeiro método é o que ocorre com maior frequência na prática. Os modelos de cálculo, bem como descrições mais detalhadas do comportamento dessas ligações, são encontrados na bibliografia específica de estruturas pré-moldadas que trate também de elementos laminares, como KONCZ (1975) ou HAAS (1983), entre outros. Este assunto não é abordado com maiores detalhes neste trabalho.
5. Arcos

5.1. Curvas funiculares

Dado o sistema de forças F_1, F_2 (Figura 14.a) a intensidade e o ponto de aplicação de sua resultante podem ser determinados por um método gráfico que ilustra bem a ideia de curva funicular. Isso é feito com auxílio do polígono de forças 0-1,1-2 (Figura 14.b), e do polígono A1',1'2' (Figura 14.c), denominado polígono funicular. O lado 0-2 do polígono de forças dá a direção, o sentido e a intensidade da resultante R, enquanto a sua reta de ação passa pelo ponto de encontro dos primeiro e último lados do polígono funicular.

O polígono funicular pode ser visto como a forma que um fio, ou uma corda, inextensível e sem peso adquire ao agir sobre ele o sistema de forças F_1, F_2. Esse fio encontra-se suspenso pelos pontos A e B. A escolha de outro ponto A, bem como outra ordem para as forças, ocasionaria outra configuração para o fio, que devido à sua flexibilidade, está em tração pura. Por analogia, se o mesmo sistema de forças agir sobre uma estrutura com a mesma forma do polígono funicular, sendo que invertido (Figura 15), feita agora com um material resistente a compressão, essa estaria essencialmente comprimida.

![Figura 15. Polígono funicular invertido. Estrutura essencialmente comprimida.](image)

No caso citado as forças são paralelas além de coplanares. Considerando-se os lados do polígono funicular como forças, todas estas terão a mesma componente H (Figura 14.b), que corresponde também ao empuxo nos pontos de suspensão do fio ou nos apoios da estrutura da Figura 15.

Se as forças são distribuídas sobre uma linha segundo uma função $q(x)$, em vez de concentradas, tem-se a curva funicular, ou simplesmente a funicular, expressa pela eq.(1), que é a equação diferencial da funicular do carregamento q, obtida com auxílio da Figura 16.

$$
\frac{d^2y}{dx^2} = -\frac{q(x)}{H}
$$

(1)
FIGURA 16. Definições para a eq. (1).

Os arcos são projetados de maneira a seu eixo aproximar-se tanto quanto possível da curva funicular invertida de um determinado carregamento. Assim, as seções do arco consomem pouco material. Esse carregamento deve ser escolhido como o que atua com maior frequência sobre a estrutura. A funicular invertida é também denominada de curva de pressões.

A questão de qual deve ser a forma de um arco começou a ser encarada do ponto de vista teórico no final do século XVII. A princípio, a tese de que o eixo teoricamente correto de um arco deveria ser uma catenária invertida foi proposta. No entanto, o projeto de arcos baseados nessa curva plana foi rejeitado por motivos estéticos, embora não seja difícil, na prática, esconder essa forma na altura da seção do arco. O arquiteto espanhol Antonio Gaudi (1852-1926) foi provavelmente o primeiro a aplicar a parábola, bem mais fácil de ser determinada que a catenária, como forma aproximada da linha de pressões (HASEGAWA, T.; TANGE, K.; OTTO, F., 1974). A parábola é a funicular de um carregamento uniformemente distribuído segundo o vão de um fio suspenso pelas extremidades.

5.2. Análise de arcos

Arcos são elementos lineares de eixo curvo, predominantemente comprimidos. Tratam-se neste trabalho apenas daqueles arcos
cujo eixo tem pequena curvatura e está situado em um plano que contém também as forças externas que agem sobre a estrutura. Além disso, as seções que se estudam tem um de seus eixos principais situados no mesmo plano do eixo da estrutura.

Nessas estruturas, com pequena curvatura, a dimensão h da seção contida no plano do eixo geométrico é bastante pequena comparada com o raio de curvatura, r, do eixo, de forma que pode-se considerar os diversos elementos ds, do eixo, como sendo prismáticos. Assim as deformações de um elemento genérico ds podem ser expressas pelas mesmas relações válidas para as vigas prismáticas. (BELLUZZI, 1970).

5.2.1. Equações de equilíbrio

Considere-se a Figura 17, que mostra um elemento ds de um arco situado entre duas seções S e S₁. Sobre o arco atua uma força distribuída, representada por suas componentes qₙ e qₜ. Essas componentes agem respectivamente segundo a normal e a tangente ao eixo. Os sentidos positivos das solicitações M, N e V são também mostrados na mesma figura.

\[M_1 = M + dN \]
\[N_1 = N + dN \]
\[V_1 = V + dV \]

FIGURA 17. Definições para o elemento de arco ds.
De acordo com a Figura 17, pelo equilíbrio das forças atuantes nas direções da normal e da tangente ao eixo e dos momentos dessas forças em relação a um eixo normal ao plano da figura e situado no centro do elemento, obtém-se as eq. (2), (3) e (4):

\[
N + r \frac{dV}{ds} = -r.q_n \tag{2}
\]

\[
V - r \frac{dN}{ds} = r.q_1 \tag{3}
\]

\[
V = \frac{dM}{ds} \tag{4}
\]

que são equações válidas para vigas com pequena ou grande curvatura. Com \(r = \infty \), as duas primeiras equações transformam-se nas equações válidas para vigas de eixo reto.

5.2.2. Deformações do eixo geométrico

Trata-se agora do cálculo das deformações do eixo geométrico de vigas de eixo curvo, isto é o movimento relativo de uma seção em relação a outra. Tais deslocamentos são úteis para a análise de arcos. Os elementos ds podem ser considerados prismáticos com aproximação tanto melhor quanto menor for \(h/r \) – vigas de pequena curvatura – e quanto mais gradual for a variação da seção. Assim as deformações do eixo são dadas pelas mesmas expressões que dão as deformações de eixos retos. Considerando a mesma convenção de sinais descrita na Figura 17 para as solicitações \(M, N \) e \(V \), as duas seções \(S \) e \(S_1 \) sofrem, devido a estas solicitações, uma rotação relativa \((d\varphi = -\Delta \theta) \), um deslocamento longitudinal relativo \((\Delta ds) \) e um deslocamento transversal relativo \((\gamma ds) \), que podem ser expressos pelas form.(1),(2) e (3).

\[
d\varphi = -\left(\frac{M.ds}{EJ}\right) \tag{1}
\]

\[
\Delta ds = \left(\frac{N.ds}{E.A}\right) \tag{2}
\]
\[\gamma ds = -\left(\frac{X.V. ds}{G.A} \right) \] \hspace{1cm} (3)

Considere-se agora um trecho qualquer BA de uma viga curva, referido aos eixos \(x \) e \(y \) com origem em O, conforme a Figura 18. Supondo o ponto B fixo, podem-se determinar os deslocamentos relativos da seção em A com respeito a uma seção em C, causados por três fatores: (1) a rotação \(d\phi \) do elemento ds, causada por M; (2) a variação de comprimento \(\Delta ds \) do elemento ds, causado por N; e, (3) o deslocamento transversal \(\gamma ds \) do elemento ds, causado por V. Esses deslocamentos são determinados com auxílio das form.(1), (2) e (3) e de alguns raciocínios de ordem geométrica. Tais passagens encontram-se em BELLUZZI (1970).

FIGURA 18. Definições para o cálculo de deslocamentos em vigas curvas de acordo com BELLUZZI (1970).

O movimento relativo da seção em A, com respeito à seção em B, é consequência das deformações de todos os elementos ds compreendidos entre B e A. Assim, deve-se integrar ao longo do trecho que vai de A até B, as parcelas correspondentes a cada um dos elementos ds situados nesse trecho. Obtém-se assim as form.(4),(5) e (6), úteis na determinação de deslocamentos em vigas de eixo curvo:
\[\Delta(\theta_a - \theta_b) = -\varphi_{ab} = -\int_b^a \frac{M \, ds}{E \, J} \]

(4)

\[\Delta(y_a - y_b) = -\int_b^a \frac{M \, (x_a - x) \, ds}{E \, J} + \int_b^a \frac{N \, dy}{E \, A} - \int_b^a \frac{X \, V \, dx}{G \, A} \]

(5)

\[\Delta(x_a - x_b) = \int_b^a \frac{M \, (y_a - y_b) \, ds}{E \, J} + \int_b^a \frac{N \, ds}{E \, A} + \int_b^a \frac{X \, V \, dy}{G \, A} \]

(6)

As integrais que contém \(N \) e \(V \) podem, em geral, ser desprezadas em relação às que contém \(M \).

Normalmente a área da secão e seu momento de inércia são variáveis. Algumas dessas variações são dadas por expressões que simplificam as integrais, permitindo solução analítica. Quando a variação é aleatória, ou bem quando o próprio eixo não é definido analiticamente, pode-se utilizar a fórmula de Simpson para solução das integrais.

Alguns valores de deslocamentos de vigas curvas assumem grande importância na análise de arcos com duas articulações. Seja, por exemplo, uma viga curva de eixo parabólico (Figura 19.a), com seção de inércia variável segundo a expressão \(J = J_e / \cos \theta \), e área variando segundo a expressão \(A = A_e / \cos \theta \). A form.(6) pode ser usada para determinar o aumento do comprimento \(\Delta q \) da corda \(L \) devido a um carregamento uniformemente distribuído \(q \).

A viga curva mostrada na Figura 19.a, devido ao carregamento \(q \), está solicitado pelos esforços \(M \), \(N \) e \(V \). No entanto, pode-se considerar apenas a influência de \(M \) para o cálculo de \(\Delta q \). O momento fletor em uma abscissa \(x \) é dado por \(M = \frac{q \, (L^2 - 4 \, x^2)}{8} \)
FIGURA 19. Exemplos de aplicação das form.(4),(5) e (6).

Tomando-se a form.(6), tem-se

\[
\Delta(x_a - x_b) = \Delta_{ql} = \frac{L}{2} \begin{array}{c} M(y_a - y_b)ds \\ E J \end{array}
\]

onde se desprezou a influência de N e V.

A equação da parábola referida aos eixos mostrados é \(y = 4.f.x^2/L^2 \), e daí o fator \((y_a - y)\) é

\[
(y_a - y) = \frac{f(L^2 - 4.x^2)}{L^2}
\]

Substituindo os valores acima, chega-se à form.(7), fazendo-se \(ds = dx/cos\theta \) e \(J = J_c/cos\theta \):

\[
\Delta_{ql} = \frac{q.L^3.f}{15.E.J_c}
\]
Considere-se agora a viga curva da Figura 19.b da qual se deseja saber o aumento do comprimento da corda, \(\Delta_{HL} \), causado pelas forças autoequilibradas H. Os esforços devidos a H são

\[
M = H (y_a - y); \quad N = H \cos \theta; \quad V = H \sen \theta
\]

Considerando-se que dy = dx \(\tan \theta \), obtém-se com a fom.(6):

\[
\Delta_{HL} = \frac{2H}{EJ_c} \int_0^L (y_a - y)^2 \, dx + \frac{2H}{EA_c} \int_0^L \cos^2 \theta \, dx + \frac{2XH}{GA_c} \int_0^L \sen^2 \theta \, dx
\]

Desenvolvendo-se as integrais chega-se, de acordo com BELLUZZI (1970), à form.(8):

\[
\Delta_{HL} = P.L.f^2 \left(\frac{8}{15} + \frac{1}{r^2} + \frac{10.7r^2}{L^2} \right) / EJ_c
\]

onde \(r^2 = J_c / A_c \) e \(X.E/G = 3 \) (seção retangular). Os termos \(r^2/f^2 \) e \(r^2/L^2 \) são termos de correção devidos a N e V, respectivamente. A importância desses termos depende das características da seção e do eixo.

5.2.3. Arcos com duas articulações

5.2.3.1. Carregamento externo

Em um arco com duas articulações submetido a forças verticais fixas quaisquer (Figura 20.a) as reações verticais \(R_a \) e \(R_b \) são as mesmas que se teria para uma viga biapoiada de vão L, e valem \(R_a = \Sigma P.b/L \) e \(R_b = \Sigma P.a/L \). O empuxo H é estaticamente indeterminado e pode ser calculado através de uma equação de compatibilidade de deslocamentos.
FIGURA 20. Definições para o arco com duas articulações.

No caso do arco de eixo parabólico submetido a uma força uniforme pode-se fazer uso das form.(7) e (8) desde que \(A = A_e / \cos \theta \) e \(J = J_e / \cos \theta \). Tomando-se apenas os termos de \(M \) para cálculo dos deslocamentos, tem-se

\[
\frac{8.\text{H}.L.f^2}{15.\text{E}.J_e} = \frac{q.L^3.f}{15.\text{E}.J_e}
\]

o que resulta em

\[
H = \frac{q.L^2}{8.F} = H_o
\]

(9)

Levando-se em conta o esforço normal para o cálculo de \(\Delta_{il} \), o valor do empuxo passa a ser

\[
H = \frac{H_o}{(1 + \frac{15.r^2}{8.f^2})}
\]

(10)
O valor dado pela forma (9) é uma boa aproximação para o valor de H. A forma (10) leva em conta também os esforços normais, sendo mais "exata".

Uma expressão mais geral para o cálculo de H pode ser obtida a partir da equação de compatibilidade de deslocamentos, eq.(5), referida à Figura 20:

\[\delta_{10} + \delta_{11} H = 0 \] \hfill (5)

onde \(\delta_{10} \) é o deslocamento horizontal de um dos apoios do arco, tornado móvel nesta direção, causado pelo carregamento externo, e \(\delta_{11} \) é o mesmo deslocamento causado agora por uma força \(H = 1 \), de acordo com a Figura 20.b. Os valores desses deslocamentos são dados por:

\[
\delta_{10} = \int \frac{M_1 M_0}{E J} \, ds + \int \frac{N_1 N_0}{E A} \, ds + \int \frac{X V_1 V_0}{G A} \, ds
\]

\[
\delta_{11} = \int \frac{M_1^2}{E J} \, ds + \int \frac{N_1^2}{E A} \, ds + \int \frac{X V_1^2}{G A} \, ds
\]

Os esforços \(M_1, N_1 \) e \(V_1 \) são obtidos com base na Figura 20.b, fazendo-se \(H = 1 \), e valem:

\[
M_1 = -1 \cdot y; \quad N_1 = -1 \cdot \cos \theta; \quad V_1 = -1 \cdot \sen \theta
\]

enquanto os esforços \(M_o, N_o \) e \(V_o \) são obtidos, para o carregamento externo, no arco tornado isostático pela remoção do vínculo horizontal de um dos apoios. Assim a expressão do empuxo é dada pela forma (11):

\[
H = \int \frac{M_o y}{E J} \, ds + \int \frac{N_o \cos \theta}{E A} \, ds + \int \frac{X V_o \sen \theta}{G A} \, ds
\]

\[
\int \frac{y^2}{E J} \, ds + \int \frac{\cos^2 \theta}{E A} \, ds + \int \frac{X \sen^2 \theta}{G A} \, ds
\] \hfill (11)
Uma simplificação da form.(11) pode ser feita quando o eixo do arco está próximo da curva de pressões. Antes de fazê-la, visando simplificar os cálculos, denominam-se

\[M = M_o + M_1 = M_o - H.y \]

\[N = N_o + N_1 = N_o - H.cos\theta \]

\[V = V_o + V_1 = V_o - H.\text{sen}\theta \]

Com base nessas expressões a equação de compatibilidade pode ser escrita como

\[\int \frac{M.y}{E.J} \, ds + \int \frac{N.cos\theta}{E.A} \, ds + \int \frac{V.\text{sen}\theta}{G.A} \, ds = 0 \]

Se o eixo do arco está próximo da curva de pressões do carregamento atuante pode-se desprezar o terceiro termo da expressão acima e, além disso, adotar-se \(N = H/cos\theta \), o que é uma aproximação. Daí obtém-se

\[\int \frac{M.y}{E.J} \, ds + \int \frac{N.cos\theta}{E.A} \, ds = 0 \]

\[\int \frac{(M_o - H.y)}{E.J} \, ds - \int \frac{H}{E.A} \, ds = 0 \]

resultando em

\[H = \frac{\int \frac{M_o.y}{E.J} \, ds}{\int \frac{y^2}{E.J} \, ds + \int \frac{ds}{E.A}} \]

\[(12) \]
A forma (12) é exata se a curva de pressões coincidir com o eixo do arco. Segundo BELLUZZI (1970) a forma (12) pode ser usada mesmo quando a curva de pressões está bastante afastada do eixo do arco, sem perda significativa na exatidão dos resultados.

Resolvendo o problema do arco de eixo parabólico sob carregamento uniforme segundo seu vão, pode-se avaliar o resultado fornecido pela forma (12). Calculando-se primeiro o termo do numerador, tem-se

$$\int \frac{M_y \cdot y}{E \cdot J} \cdot ds = \frac{q \cdot L^3}{15 \cdot E \cdot J_c}$$

com $J_c = J / \cos \theta$.

Os termos do numerador valem

$$\int \frac{y^2}{E \cdot J} \cdot ds = \frac{8 \cdot f^2 \cdot L}{15 \cdot E \cdot J_c}$$

$$\int \frac{ds}{E \cdot A} = \frac{L}{E \cdot A_c}$$

com $A_c = A / \cos \theta$. Substituindo os valores acima na forma (12), chega-se ao mesmo resultado da forma (10):

$$H = \frac{H_y}{1 + \frac{15 \cdot r^2}{8 \cdot f^2}}$$

O mesmo problema encontra-se resolvido em BELLUZZI (1970) com uso da forma (11). O resultado é dado pela forma (13). As formas (10) e (13) aplicadas a uma seção retangular com distintos valores de f/L e h/f apresentam resultados com diferença da ordem de 0^6, portanto, insignificantes.
\[H = \frac{1 + \frac{15}{8} \frac{r^2}{f^2} (2 - 2 \frac{L}{4f} \arctg(\frac{4f}{L}))}{1 + \frac{15}{8} \frac{r^2}{f^2} (3 - 2 \frac{L}{4f} \arctg(\frac{4f}{L}))} \cdot H_o \]
(13)

5.2.3.2. Outras ações sobre o arco

Outras ações que devem ser consideradas no cálculo de arcos com duas articulações são a variação de temperatura e o deslocamento horizontal dos apoios. A fórmula (12) também se aplica nestes casos.

Sob uma variação uniforme de temperatura (\(\Delta t\)) o comprimento de cada elemento ds varia de \(\Delta s = \alpha \cdot ds \cdot \Delta t\), sem flexão, e sua projeção horizontal dx varia de \(\Delta dx = \alpha \cdot dx \cdot \Delta t\). O comprimento da corda varia então de \(\Delta L = \Sigma \Delta dx\). Como o encurtamento da corda provocado por uma força \(H\) é o produto de \(H\) pelo denominador da fórmula (12), obtém-se o valor de \(H_{\Delta L}\), dado por

\[H_{\Delta L} = \frac{\int \alpha \cdot \Delta t \cdot dx}{\int \frac{y^2}{EJ} ds + \int \frac{ds}{EA}} \]
(14)

Um movimento horizontal de um dos apoios faz variar em \(\Delta L\) o comprimento da corda do arco. A reação horizontal \(H_{\Delta L}\), dirigida para fora se \(\Delta L\) é positivo é dada por

\[H_{\Delta L} = -\frac{\Delta L}{\int \frac{y^2}{EJ} ds + \int \frac{ds}{EA}} \]
(15)

5.3. Análise de arcos pelo Método dos Elementos Finitos

A Figura 21 mostra um tipo de elemento curvo de arco, com um sistema de coordenadas locais s e z, respectivamente tangente e normal ao eixo do
elemento. A deformação tangencial (ε_t) em um ponto arbitrário da seção do elemento pode ser determinada com auxílio da Figura 21.b. Se o ponto está situado a uma distância z do eixo, tem-se

$$\varepsilon_t = \frac{d(\delta_a - \delta_b)}{ds} + \frac{w}{R} = \frac{du}{ds} + \frac{w}{R} = z \left(\frac{du}{ds} \frac{1}{R} - \frac{d^2w}{ds^2} \right)$$

(6)

A eq.(6) pode ser escrita como $\varepsilon_t = \varepsilon_m + z \kappa$, sendo

$$\varepsilon_m = \frac{du}{ds} + \frac{w}{R}$$

(7)

$$\kappa = \frac{du}{ds} \frac{1}{R} - \frac{d^2w}{ds^2}$$

(8)

A deformação \(\varepsilon_m \) está associada com as forças na direção s. O índice m, vem de *membrane* — membrana em inglês — constituindo portanto uma analogia entre o comportamento dos arcos e das cascas. A variação de curvatura \(\kappa \) está associada com os momentos fletores. A deformação por cisalhamento foi desprezada, o que é válido para arcos nos quais \(R >> t \).

A energia de deformação em um elemento de arco é portanto composta de uma contribuição de "membrana" (\(U_m \)) e uma contribuição de flexão (\(U_b \)). Para o elemento da Figura 21.a, tem-se:

\[
U = U_m + U_b = \frac{L}{2} E A \varepsilon_m^2 ds + \frac{L}{2} E J \kappa^2 ds
\]

Mas, para a análise de arcos pelo MEF um elemento reta de pôrtilo com três graus de liberdade por nó, pode ser usado. As relações entre as deformações na seção e os deslocamentos do seu eixo geométrico são dadas pelas eq. (7) e (8) com \(R = \infty \). Os comportamentos de "membrana" e flexão no elemento reta são independentes, ao contrário do que acontece em um elemento curvo. No entanto a sua formulação é mais simples.

A matriz de rigidez do elemento é formada por alguns termos nulos, resultado da independência entre os dois comportamentos. Como consequência a malha formada por elementos retos para modelar um arco não pode ser muito grosseira. De acordo com COOK (1987) em uma malha não muito refinada é conveniente adotar o comprimento dos arcos entre dois nós sucessivos como o comprimento do elemento — em vez da corda — visando obter melhores resultados. Outra recomendação do mesmo autor é relacionada aos carregamentos distribuídos sobre o arco, que devem ser modelados como forças nodais. Evita-se assim o aparecimento de falsos momentos fletores.
6. Cúpulas

6.1. Membranas curvas

Membranas são estruturas laminares muito delgadas, consideradas por isto desprovidas de rigidez à flexão e à torção. Nas membranas planas carregadas perpendicularlymente a seu plano, o equilíbrio das forças exteriores só acontece mediante deformações, já que os esforços internos devem estar inclinados para equilibrar a pressão atuante (Figura 22).

![Diagrama de membrana]

FIGURA 22. Membrana plana deformada sob ação de carregamento

Nas membranas curvas as deformações elásticas não tem muita influência sobre os esforços, a não ser que sejam muito grandes, e tais estruturas são consideradas inextensíveis. No entanto tal fato merece algumas considerações. Tendo em vista os objetivos deste trabalho, consideram-se apenas as membranas de revolução de dupla curvatura, com base em BELLUZZI (1970).
A Figura 23.a mostra uma superfície gerada pela rotação de uma curva plana em torno de um eixo, contido no plano da curva, constituindo a superfície média de uma membrana de revolução. Sobre ela atua um sistema de forças q, iguais em todos os meridianos mas podendo variar de um paralelo ao outro. Trata-se portanto de um sistema de forças com simetria em relação ao eixo de revolução da estrutura. As forças desse sistema podem ter componentes X e Z (Figura 23.b).

FIGURA 23. Definições para a membrana de revolução

Essa estrutura possui espessura t que pode ser muito pequena, quando a membrana é então flexível, ou ser tal que possa conferir à estrutura certa rigidez a flexão. Nesse último caso, sob ação das forças q surgem tensões nas seções da estrutura que podem ser quaisquer dentre as mostradas na Figura 24.

FIGURA 24. Tensões em uma estrutura de revolução carregada com simetria axial: (a) tensões de membrana e (b) tensões de flexão.
As tensões σ_1 agem segundo as tangentes aos meridianos e são causadas pela resultante vertical das forças q. As tensões σ_2 agem segundo as tangentes aos paralelos, e podem ser causadas pela componente Z das forças q e/ou pelo fato de as σ_1, variando de direção ao longo dos meridianos (pois este é curvo), não estão equilibradas entre si e provocam uma ação radial sobre os paralelos. Essas tensões σ_1 e σ_2 são denominadas tensões de membrana.

As tensões σ'_1 e σ'_2 são devidas a variações de curvatura dos meridianos e paralelos da estrutura, respectivamente. As tensões σ'_2 podem ser supostas nulas, o que implica em existirem apenas as σ_2 ao longo dos paralelos. Isso é aceitável devido ao fato da espessura t da estrutura ser bem menor que os raios r dos paralelos. As tensões σ_2, uniformemente distribuídas na espessura, causam variações Δr no comprimento dos raios dos paralelos e, consequentemente, variações na curvatura dos meridianos, originando tensões σ'_1. Mas, devido ao fato das variações Δr serem muito pequenas, visto que são causadas por tensões normais, e sobretudo devido ao fato da espessura t da membrana ser muito pequena, as tensões σ'_1 também podem ser supostas nulas. Isso só não pode ser feito quando atuam forças ou momentos concentrados ao longo de um paralelo ou quando a curvatura do meridiano apresenta uma variação brusca. As tensões τ_1 e τ_2, frente ao que foi comentado são também nulas. Essas tensões σ'_1, σ'_2, τ_1 e τ_2 são denominadas tensões de flexão.

A conclusão a que se chega é que em todos os pontos da estrutura existe um estado plano de tensões, cujo plano é tangente à superfície média no ponto considerado. Isso é consequência de não se ter considerado a influência das deformações da membrana sobre os esforços, isto é, de se ter considerado a membrana inextensível. Logo o cálculo das tensões σ_1 e σ_2 é estaticamente determinado.

No caso das cúpulas, existem tensões de membrana e de flexão, e o problema passa a ser estaticamente indeterminado. No entanto, no estudo das cúpulas podem-se utilizar com boa aproximação os resultados válidos para as membranas, levando-se em conta separadamente as ações no contorno da estrutura, conforme será visto no item 6.2.
Uma característica importante no comportamento das membranas de revolução é que estas podem suportar ações de vários tipos sem esforços de flexão. É portanto um comportamento diferente daquele de um fio flexível.

As cúpulas, projetadas por analogia com as membranas de revolução, não necessitam ter uma forma especial para suportar uma determinada distribuição de forças sem esforços de flexão. Para vários tipos de carregamentos tem-se um estado plano de tensões na membrana, que levam a uma utilização eficiente dos materiais.

6.2. Análise de cúpulas

Em uma casca, geralmente agem tensões de membrana e de flexão. A análise de tais estruturas não pode ser feita apenas com as equações da estática. O problema é bastante complicado, tanto do ponto de vista matemático como do ponto de vista conceitual.

A solução de problemas de análise de cascas é geralmente encontrada utilizando-se a idéia do método das forças de análise, frequentemente usado para estruturas de barras, constituindo o que se chama de método geral de análise.

O método geral consiste em dividir o problema em quatro etapas distintas. Na primeira etapa considera-se o carregamento inteiramente resistido por esforços de membrana; obtém-se assim o denominado sistema principal, que corresponde a reduzir a teoria geral à teoria de membrana, e consequentemente reduzir o problema a um problema estaticamente determinado. Os deslocamentos e as forças calculadas com esta consideração em geral não serão compatíveis com as condições de contorno conhecidas. A segunda etapa consiste então em determinar os erros correspondentes aos efeitos de borda incompatíveis. Forças e deslocamentos devem ser aplicados aos contornos da casca, para remover essas incompatibilidades. Isso é feito na terceira etapa, fase de correções, que consiste em aplicar esforços unitários nas bordas da casca e calcular seus efeitos usando-se uma teoria de flexão.
Por fim na quarta etapa, a **compatibilidade** é obtida determinando-se o tamanho das correções necessárias para remover os erros da teoria de membrana (BILLINGTON, 1982).

Descreve-se a seguir a aplicação deste método a cúpulas esféricas. Cúpulas são estruturas com a forma de uma superfície de revolução, obtidas pela rotação de uma curva plana em torno de um eixo situado neste plano. A curva plana é denominada meridiano (Figura 25).

FIGURA 25. Tipos de cúpulas: (a) cúpula esférica; (b) cúpula cônica; (c) cúpula conoidal.

Neste trabalho estudam-se as cúpulas esféricas, que são geradas por um meridiano em forma de arco de círculo. Convém lembrar que a análise aqui descrita é válida apenas para cúpulas em casca esbelta. Segundo RAMASWAMI (1968), uma casca pode ser considerada esbelta se a relação entre a sua espessura (t) e o raio de curvatura da sua superfície média, superfície situada na metade da sua espessura, não for superior a 1/20.

6.2.1. Esforços em cúpulas carregadas com simetria axial dados pela teoria de membrana

A Figura 26 mostra os esforços de membrana em um elemento diferencial de uma superfície de revolução. Os esforços de membrana são obtidos
multiplicando-se as tensões de membrana pela espessura da cúpula, sendo portanto expressos em unidade de força por unidade de comprimento. Os esforços mostrados na Figura 26 são referidos a uma largura unitária.

FIGURA 26. Definição de elemento diferencial de membrana de revolução em coordenadas polares.

As equações de equilíbrio para o elemento mostrado na Figura 26 são:

\[
\frac{\partial N'_\theta \cdot r_1}{\partial \phi} + N'_\theta \cdot \frac{\partial r_1}{\partial \phi} + \frac{\partial (N'_\phi \cdot r_0)}{\partial \phi} + p_\theta \cdot r_0 \cdot r_1 = 0
\]

\[
\frac{\partial (N'_\phi \cdot r_0)}{\partial \phi} - N'_\theta \cdot \frac{\partial r_0}{\partial \phi} + \frac{\partial N'_\theta}{\partial \theta} \cdot r_1 + p_\phi \cdot r_0 \cdot r_1 = 0
\]

\[
\frac{N'_\theta}{r_2} + \frac{N'_\phi}{r_1} + p_z = 0
\]

Para cúpulas carregadas com simetria axial todos os termos envolvendo \(\partial \theta \) desaparecem e os termos \(\partial \phi \) podem ser escritos como diferenciais totais \(d\phi \). Além disso, devido à simetria os esforços \(N'_\phi \), \(N'_\theta \) e a componente \(p_\theta \) são
nulas. Fazendo-se o equilíbrio do elemento diferencial chega-se a um sistema formado pelas eq. (9) e (10), com duas incógnitas.

\[
\frac{d(N'_\phi \cdot r_0)}{d\phi} - N'_\theta \cdot \frac{dr_0}{d\phi} + p_\phi \cdot r_0 \cdot r_1 = 0 \tag{9}
\]

\[
\frac{N'_\theta}{r_2} + \frac{N'_\phi}{r_1} + p_z = 0 \tag{10}
\]

Sua solução é mais simples fazendo-se o equilíbrio de uma parte da cúpula conforme mostra-se na Figura 27.

FIGURA 27. Esforços internos em uma cúpula

Pela simetria do carregamento, a resultante R de todas as forças atuantes na cúpula deve ser vertical. O raio \(r_o \) é o raio do paralelo correspondente à seção feita com o plano \(\pi \). O equilíbrio na direção vertical permite que se determine \(N'_\phi \), como se pode ver abaixo

\[
N'_\phi \cdot \text{sen} \phi \cdot 2\pi r_o = R
\]

\[
N'_\phi = \frac{R}{(2\pi \cdot r_o \cdot \text{sen} \phi)}
\]
ou, pela convenção da Figura 26

\[N'_\phi = -\frac{R}{2\pi r_0 \cdot \text{sen}\phi} \]

Determinado \(N'_\phi \) pode-se agora determinar \(N'_\theta \) através da eq.(10), chegando-se a

\[N'_\theta = \frac{R}{2\pi r_1 \cdot \text{sen}(2\phi)} - p_z \cdot \frac{r_0}{\text{sen}\phi} \]

No caso de uma cúpula esférica \(r_1 = r_2 = a \). De acordo com o carregamento atuante tem-se o valor de \(R \). A Tabela 5 mostra os valores da resultante \(R \) para alguns tipos de carregamento em função do ângulo \(\phi \).

TABELA 5. Resultante \(R \) para cálculo de esforços em membranas esféricas.

<table>
<thead>
<tr>
<th>CARREGAMENTO</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2\pi a^2 q \int \text{sen}\phi \cdot d\phi)</td>
<td>[2\pi a^2 q \int \text{sen}\phi \cdot d\phi]</td>
</tr>
<tr>
<td>(p a^2 \pi \cdot \text{sen}^2 \phi)</td>
<td>[p a^2 \pi \cdot \text{sen}^2 \phi]</td>
</tr>
<tr>
<td>(2\pi a^2 p \int \text{sen}\phi \cdot \cos^2 \phi \cdot d\phi)</td>
<td>[2\pi a^2 p \int \text{sen}\phi \cdot \cos^2 \phi \cdot d\phi]</td>
</tr>
</tbody>
</table>
6.2.2. Erros devidos às condições de borda

A teoria de membrana baseia-se na hipótese que a casca suporta as ações apenas por esforços de membrana, desprezando-se os esforços resultantes de tensões não-uniformes nas equações de equilíbrio. Daí decorre que as condições de contorno devem fornecer forças de borda calculadas pela teoria de membrana. As condições de contorno devem também permitir deslocamentos de borda calculados com as forças encontradas pela teoria de membrana. Caso contrário as bordas da casca irão introduzir descontinuidades na membrana. Essas descontinuidades induzem flexões que precisam ser avaliadas (Figura 28).

![Diagrama de Momentos Fletores](image)

FIGURA 28. Momentos fletores induzidos em uma cúpula devido às descontinuidades da membrana.

6.2.2.1. Descontinuidades na borda superior

Eventualmente a cúpula é dotada de uma abertura central na coroa. A abertura é coberta por um lanternim que introduz uma carga P distribuída pelo comprimento da borda livre superior (Figura 29).
Usando as eq.(9) e (10) determina-se os esforços de membrana causados por P. A resultante R vale P.2π.a.sen φₒ. Com esse valor encontra-se as formas (15) e (16).

\[N_\phi' = -\frac{P \cdot \text{sen} \phi_o}{\text{sen}^2 \phi} \]
\[N_\theta' = \frac{P \cdot \text{sen} \phi_o}{\text{sen}^2 \phi} \]

A eq.(15) mostra que o esforço \(N_\phi' \) para \(\phi = \phi_o \), vale \(N_\phi' = -\frac{P}{\text{sen} \phi_o} \), que corresponde a uma componente de P segundo a tangente ao meridiano na borda. O empuxo meridional \(N_\phi' \) consegue resistir apenas a essa parcela de P. A outra componente de P, \(H = \frac{P}{\text{tan} \phi_o} \) (Figura 29.b), requer uma reação horizontal e introduz uma compressão na borda da casca de valor \(C = H \cdot r \), sendo r o raio do paralelo correspondente a \(\phi = \phi_o \).

![Diagrama](a)

![Diagrama](b)

FIGURA 29. Decomposição das ações atuantes na borda superior.

Como a força H é grande, pois \(\phi_o \) é pequeno, a força de compressão C também será grande. Por isso a borda superior tem sua espessura aumentada formando o anel superior.

O esforço \(N_\theta' \) é de tração abaixo de \(\phi_o \), o que provoca um aumento no raio \(r_o \), de um valor \(\delta_{hc} \). No entanto, o anel superior está comprimido e
sofre uma diminuição de seu raio, de um valor δ_{ba}. Essa incompatibilidade de deslocamentos representa um erro no contorno da casca e irá provocar flexão (Figura 30).

Para carregamentos sobre a superfície da cúpula a flexão ocorre devido à diferença de rigidez entre os dois elementos, anel e casca.

FIGURA 30. Erros na borda superior

6.2.2.2. Descontinuidades na borda inferior

Geralmente os apoios da cúpula não são inclinados segundo as tangentes aos meridianos na borda. O caso mais geral é de apoios que fornecem apenas reação vertical para o empuxo meridional. Resta então a componente horizontal deste empuxo que precisa ser resistida. Normalmente a restrição lateral é imposta por meio de um anel de borda, uma parede cilíndrica ou uma combinação destes dois elementos estruturais. Considere-se o caso de restrição lateral com anel de borda.

A cúpula, sob ação de carregamento irá, pela teoria de membrana, desenvolver um empuxo que é igual à componente horizontal de N'_{max}, e uma reação vertical igual à componente vertical deste mesmo esforço. Se o apoio só desenvolve reação vertical (Figura 31) apenas o anel inferior resiste ao empuxo.
Por motivos construtivos é desejável que a superfície da cúpula não apresente inclinação superior a 45°. O esforço N_b, para $\phi < 45°$, é de compressão para os carregamentos mostrados na Tabela 5, que são os mais frequentes. Isso provoca um encurtamento em seu raio, de um valor δ_{hc}. Por outro lado, o empuxo irá provocar tração no anel (Figura 31.b) o que aumentará seu raio de um valor δ_{ha}. Essa incompatibilidade de deslocamentos dados pela teoria de membrana representa um erro na borda inferior da casca, provocando assim flexão (Figura 32).

FIGURA 31. Decomposição dos esforços na borda inferior.

FIGURA 32. Erros na borda inferior

Nas duas bordas deve-se considerar que existem erros devidos à rotação α_c, da tangente ao meridiano da cúpula. Em alguns casos pode haver
também uma rotação do anel por torção, α, e um deslocamento δ_{Ma}, no mesmo elemento, quando a força H é aplicada a uma distância y_o do seu centro de gravidade.

Para avaliar a flexão induzida por estas descontinuidades deve-se calcular os deslocamentos acima citados, todos dados pela teoria de membrana.

6.2.3. Correções e compatibilidade

Forças de borda $H = 1$ e $M_o = 1$ são aplicadas de acordo com a Figura 33. Os efeitos dessas forças na casca devem ser determinados com uma teoria de flexão. Está além dos objetivos deste trabalho descrever uma teoria de flexão para cascas. A título de informação, expressões para cálculo dos efeitos de borda em cúpulas esféricas, obtidas pela solução de Geckeler, podem ser encontradas por exemplo em BILLINGTON (1982).

![Diagrama de Forças](image)

FIGURA 33. Forças unitárias aplicadas nas bordas da cúpula
Uma vez aplicadas as ações unitárias H e M_n resta determinar os valores das forças de correção X_1 e X_2 necessárias para remover os erros da teoria de membrana. Isso é feito a partir de equações de compatibilidade de deslocamentos das bordas da cúpula.

$$\delta_{10} = \delta_{11} \cdot X_1 + \delta_{12} \cdot X_2$$

$$\delta_{20} = \delta_{21} \cdot X_1 + \delta_{22} \cdot X_2$$

onde os valores δ_{10} são obtidos com o carecimento externo atuante sobre a cúpula vinculada como uma membrana ao anel (sistema principal), sendo a soma dos deslocamentos da cúpula tratada como membrana com os deslocamentos do anel de borda. Os valores de δ_{11} são obtidos com os carregamentos mostrados na Figura 33.

Os esforços finais (S) são determinados por superposição fazendo-se $S = S_n + \sum S_i X_i$, o que é usual em problemas resolvidos pelo método das forças.

Neste trabalho utiliza-se um programa baseado no Método dos Elementos Finitos, SAP 90, que dispõe dos elementos descritos a seguir. Nesse caso os resultados obtidos já são os efeitos finais não sendo necessário fazer a superposição mencionada.

6.3. Análise de cascas pelo Método dos Elementos Finitos

Em se tratando da análise de cascas pelo MEF, BILLINGTON (1982) afirma que os pontos principais a serem observados são: (a) a forma do elemento; (b) o número de graus de liberdade de seus nós; e (c) a ligação entre elementos de casca e de viga.

Três tipos de elementos são usados para a análise de cascas pelo MEF: (1) elementos planos, obtidos combinando-se um elemento plano de membrana com um elemento de placa; (2) elementos curvos, formulados com base em
alguma teoria de cascas; (3) elementos tipo Mindlin, similares aos elementos de placa Mindlin, que são elementos sólidos tornados esbeltos em uma direção.

O programa que aqui usamos dispõe de elementos planos, que modelam a superfície da casca como uma superfície facetada. Um elemento curvo seria mais preciso para definir a geometria da casca mas isso não implicaria em melhores resultados. Como são baseados em alguma teoria de cascas, as simplificações e, em alguns casos, as restrições dessa teoria o acompanham. Além disso, os elementos curvos apresentam alguns problemas como deformações em movimento de corpo rígido (COOK, 1989). Os elementos planos apresentam a vantagem de serem formulados de maneira relativamente fácil, simplificando o trabalho do analista. O trabalho do usuário também é simplificado ao se utilizar de elementos planos, pois estes necessitam apenas das coordenadas dos nós para serem definidos. Por outro lado, a desvantagem de elementos planos é que em sua formulação as rigidezes de membrana e de flexão são tornadas independentes. A ligação entre essas rigidezes, que é uma característica do comportamento das cascas, apenas é conseguida quando os elementos são reunidos de maneira a aproximar a curvatura da superfície (CLOUGH & JOHNSON, 1971).

Os elementos usados neste trabalho são quadriláteros com seis graus de liberdade por nó. Três destes são associados ao comportamento de membrana, sendo duas translações em seu plano e uma rotação em torno de um eixo perpendicular ao mesmo. Os demais são associados ao comportamento de flexão, sendo duas rotações em torno de dois eixos, perpendiculares entre si, situados no plano do elemento e uma translação perpendicular a esse plano (Figura 34). Todos esses graus de liberdade são relativos aos eixos locais dos elementos.

A presença de vigas nos sistemas estruturais em casca é uma constante, aparecendo às vezes distribuídos por sua superfície, como nas cascas nervuradas, e às vezes concentrados em suas bordas, caso mais comum. Estruturas em casca sem vigas de borda também existem, embora sejam mais raras. A incorporação de elementos de barra em uma modelagem deve ser feita de maneira a satisfazer os requisitos de compatibilidade do sistema, o que em alguns casos pode ser
ser conseguido impondo-se coações em alguns graus de liberdade de elementos adjacentes.

\[\begin{array}{c}
\theta_{z,1} \\
\omega_1 \\
u_1 \\
y \\
x \\
1 \\
2 \\
3 \\
4 \\
\end{array} \]

FIGURA 34. Quadriláteros planos com seus graus de liberdade associados ao comportamento de membrana (a) e ao comportamento de flexão (b).

O caráter geral do Método dos Elementos Finitos, possibilitando o tratamento de carregamentos e condições de contorno quaisquer, o seu bom desempenho em problemas não homogêneos — possibilitando a consideração de variação de propriedades geométricas, como a espessura, ao longo da superfície da casca — e por fim a possibilidade de inclusão de elementos de viga como parte integrante do sistema estrutural, são algumas de suas vantagens frente ao método clássico. Por outro lado, o grande tempo gasto no trabalho de geração de dados para certas estruturas pode ser citado como uma desvantagem do método.

BILLINGTON (1982), afirma que o uso de programas de computador, não apenas aqueles baseados no MEF, é em alguns casos mais do que uma simples conveniência, tendo possibilitado a solução de problemas nunca antes resolvidos com os métodos clássicos. No entanto, continuando seu raciocínio, o citado autor diz que os métodos clássicos são ainda bastante práticos para o entendimento do comportamento de vários sistemas estruturais em casca, sendo portanto ferramentas úteis para o projetista.
7. Estudos de caso

7.1. Projeto I

7.1.1. Descrição da estrutura

Trata-se de uma cobertura cilíndrica ondulada feita de elementos pré-moldados de “ferro-cimento” formando assim uma série de arcos paralelos (Figura 35). A estrutura apoia-se em pilares, moldados no local, por meio de elementos de ligação em forma de leque que reagrupam sobre o vértice destes pilares, três ondas sucessivas da abóbada (Figura 36).

Os arcos possuem inércia variável, aumentando dos apoios para o centro. Segundo OSHIMA (1983), Nervi optou por essa variação de seção para obter uma estrutura com comportamento estático bem próximo ao de um arco com duas articulações, devido à impossibilidade de conseguir um engastamento sobre os pilares.
FIGURA 35. Corte mostrando um arco formado pela cobertura

FIGURA 36. (a) Vista da união entre a cobertura e os pilares de apoio; (b) Esquema de repartição das forças dos arcos sobre os elementos do "leque", extraído de DESIDERI et al. (1982)
A seção tranversal de um desses arcos é mostrada na Figura 37.

![Figura 37. Seção no meio do vão de um dos arcos paralelos.](image)

No cálculo de esforços, segundo OSHIMA (1983), levou-se em consideração uma sobrecarga uniformemente distribuída de 150 kgf/m², bem como a hipótese limite dessa sobrecarga atuando apenas em metade do vão. Além disso considerou-se uma variação de temperatura de 20º C.

Os elementos pré-moldados, feitos em 'ferro-cemento', foram colocados sobre um andaime metálico e unidos através da concretagem de arcos de concreto armado moldados ao longo do vértice e da concavidade das ondulações.

Estes elementos foram produzidos em série sobre fórmas desmontáveis. Sua armação consistia de várias camadas de telas e barras de aço. As barras tinham suas extremidades salientes nas zonas superior e inferior dos elementos para assegurar a ligação entre estes e os arcos concretados no local.

Como se pode ver na Figura 37, os elementos apresentam suas faces laterais com inclinação bastante acentuada. O uso do 'ferro-cemento' viabilizou a execução dessas peças. Caso fosse usado concreto armado comum, provavelmente seria necessário adotar-se fórmas duplas, o que poderia aumentar o custo da execução dos elementos. Além disso elementos em concreto armado seriam necessariamente
mais pesados, pois não seria possível fazê-los com essa pequena espessura (3,8 cm). Cada elemento pesava em média 1500 kgf.

A montagem da estrutura se deu com o uso de andaime metálico tubular, móvel, dividido em duas partes, cada uma correspondendo a um quarto do comprimento da cobertura. Os elementos começaram a ser posicionados a partir do centro dos arcos. As operações de içamento e posicionamento dos elementos foram feitas num ritmo de aproximadamente 30 elementos por dia, correspondendo a 300 m² de área coberta. Cada quarto da cobertura pode ser montado, concretado e ter o andaime desmontado em cerca de 20 dias. Esse desmonte foi feito retirando-se cunhas de madeira dura sobre as quais foram posicionadas as bases do andaime (OSHIMA, 1983).

7.1.2. Análise da cobertura cilíndrica ondulada

A estrutura é composta por uma série de elementos retos dispostos de maneira a aproximar a curvatura do arco. Para o cálculo dos esforços modelou-se a estrutura com elementos finitos retos cujos nós foram feitos coincidir com os nós dos elementos pré-moldados da estrutura original. Fez-se também um cálculo aproximado com as fórmulas do método clássico tomando-se a estrutura como um arco de eixo parabólico e desprezando-se a variação da seção. A geometria do modelo é mostrada na Figura 38.

Os arquivos com dados fornecidos ao programa, denominados ARCO1 e ARCO2, encontram-se no Anexo. A estrutura foi dividida em 14 elementos formando uma malha bastante refinada. O seu eixo segue uma parábola cuja equação, referida aos eixos x e y mostrados na Figura 38, é

\[y = \frac{4f}{L^2} \cdot (xL - x^2). \]
FIGURA 38. Malha formada com elementos retos.

As características geométricas da seção foram calculadas com base na Figura 38, e são mostradas na Tabela 6. O módulo de deformação longitudinal (E) usado foi $2,8 \times 10^7$ kN/m2. Não se considerou as deformações por esforço cortante.

As ações para cálculo são: (1) sobrecarga uniformemente distribuída ao longo da projeção horizontal do arco, de valor $q = 1,50$ kN/m2; (2) variação uniforme de temperatura de $\pm 20^\circ$ C; (3) sobrecarga uniformemente distribuída ao longo de metade da projeção horizontal do arco; (4) peso próprio; (5) deslocamento horizontal de um dos apoios de 1cm.

TABELA 6. Características geométricas das seções dos elementos

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>A (cm2)</th>
<th>J (cm4)</th>
<th>W (cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 14</td>
<td>2600</td>
<td>$6,5 \times 10^6$</td>
<td>92900</td>
</tr>
<tr>
<td>2 = 13</td>
<td>2600</td>
<td>$6,8 \times 10^6$</td>
<td>94900</td>
</tr>
<tr>
<td>3 = 12</td>
<td>1800</td>
<td>$7,0 \times 10^6$</td>
<td>95400</td>
</tr>
<tr>
<td>4 = 11</td>
<td>1800</td>
<td>$7,3 \times 10^6$</td>
<td>97300</td>
</tr>
<tr>
<td>5 = 10</td>
<td>1800</td>
<td>$7,6 \times 10^6$</td>
<td>99200</td>
</tr>
<tr>
<td>6 = 9</td>
<td>1800</td>
<td>$7,9 \times 10^6$</td>
<td>100800</td>
</tr>
<tr>
<td>7 = 8</td>
<td>1800</td>
<td>$8,2 \times 10^6$</td>
<td>102500</td>
</tr>
</tbody>
</table>
A Tabela 7 mostra os valores máximos do momento fletor para cada ação considerada acompanhados do número do elemento em que estes esforços ocorrem bem como dos demais esforços no mesmo elemento.

No Anexo apresentam-se os diagramas de esforços no arco para as ações mencionadas.

TABELA 7. Elementos mais solicitados por flexão

<table>
<thead>
<tr>
<th>AÇÃO</th>
<th>(M_{\text{máx}}) (kN.m)</th>
<th>(N_{\text{corr.}}) (kN)</th>
<th>(V_{\text{corr.}}) (kN)</th>
<th>Número do elemento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22,4</td>
<td>-201,1</td>
<td>8,4</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>-106,9</td>
<td>-14,8</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>192,7</td>
<td>-103,3</td>
<td>-9,0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>25,7</td>
<td>-260,2</td>
<td>-10,1</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>95,4</td>
<td>13,2</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

7.1.3. Comentários

A form.(12) pode ser usada para avaliar os resultados obtidos. Tomando-se por exemplo o carregamento 4 (peso próprio) o valor do empuxo H pode ser calculado de maneira simples com as seguintes hipóteses: (a) tratar o peso próprio como uma carga uniforme segundo a projeção horizontal do arco e (b) fazer \(ds = dx \) na form.(12). Isso não implica em grandes erros pois o arco é abatido (\(f/L \leq 1/8 \)). Se além disso despreza-se a variação da inércia fazendo-se \(J = J_c = \text{cte.} \), o valor de H é dado pela form.(10) como pode-se verificar facilmente desenvolvendo a form.(12) com essas hipóteses.

O peso próprio da estrutura por unidade de comprimento vale 4,50 kN/m, obtido multiplicando-se a área da seção de um elemento (\(A = 1800 \text{ cm}^2 \)) pelo peso específico do concreto armado (\(W = 25 \text{ kN/m}^3 \)). Esse valor transformado para uma carga distribuída segundo a projeção horizontal do arco vale
\[q = 4,50 \times \frac{58,5}{56} = 4,7\text{kN/m} \]

Substituindo-se esse valor e os valores de J e A na form.(10) fica-se com

\[H = \frac{4,7 \times 56^2}{8 \times 7,25} \times \frac{1}{\left(1 + \frac{15}{8} \times 8,2 \times 10^{-2}
ight)} = 250,06\text{kN} \]

O valor encontrado difere pouco do valor fornecido pelo cálculo utilizando-se um modelo de elementos retos, como se vê na Tabela 8. Os valores de H encontrados para os outros carregamentos também se encontram na Tabela 8, juntamente com os valores fornecidos pelo programa.

TABELA 8. Valores do empuxo H (kN)

<table>
<thead>
<tr>
<th>CARREGAMENTO</th>
<th>form.(10)</th>
<th>SAP90</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>199,5</td>
<td>201,0</td>
</tr>
<tr>
<td>2</td>
<td>16,1</td>
<td>14,8</td>
</tr>
<tr>
<td>3</td>
<td>99,7</td>
<td>100,5</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>247,4</td>
</tr>
<tr>
<td>5</td>
<td>-14,4</td>
<td>-13,2</td>
</tr>
</tbody>
</table>

Na Tabela 9 apresentam-se os valores das tensões normais nos elementos para carregamentos simétricos. O valor superior corresponde à tensão normal devida ao esforço normal, enquanto o valor inferior corresponde às tensões normais nas bordas das seções devidas ao momento fletor. As tensões de compressão têm valor negativo, de acordo com a convenção tradicional. Esses valores foram calculados considerando-se a seção não fissurada e desprezando a presença da armadura. São valores apenas convencionais mas que de certo modo fornecem uma boa idéia do nível de solicitação nas seções.
TABELA 9. Tensões normais máximas para carregamentos simétricos (MPa)

<table>
<thead>
<tr>
<th>CARR.</th>
<th>EL. 1</th>
<th>EL. 2</th>
<th>EL. 3</th>
<th>EL. 4</th>
<th>EL. 5</th>
<th>EL. 6</th>
<th>EL. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0,86</td>
<td>-0,8</td>
<td>-1,18</td>
<td>-1,15</td>
<td>-1,13</td>
<td>-1,12</td>
<td>-1,12</td>
</tr>
<tr>
<td></td>
<td>±0,10</td>
<td>±0,14</td>
<td>±0,17</td>
<td>±0,19</td>
<td>±0,21</td>
<td>±0,22</td>
<td>±0,22</td>
</tr>
<tr>
<td>2</td>
<td>±0,05</td>
<td>±0,05</td>
<td>±0,08</td>
<td>±0,08</td>
<td>±0,08</td>
<td>±0,08</td>
<td>±0,08</td>
</tr>
<tr>
<td></td>
<td>±0,31</td>
<td>±0,57</td>
<td>±0,78</td>
<td>±0,93</td>
<td>±1,02</td>
<td>±1,06</td>
<td>±1,04</td>
</tr>
<tr>
<td>4</td>
<td>-1,06</td>
<td>-1,03</td>
<td>-1,44</td>
<td>-1,41</td>
<td>-1,39</td>
<td>-1,38</td>
<td>-1,37</td>
</tr>
<tr>
<td></td>
<td>±0,16</td>
<td>±0,24</td>
<td>±0,27</td>
<td>±0,26</td>
<td>±0,24</td>
<td>±0,22</td>
<td>±0,21</td>
</tr>
<tr>
<td>5</td>
<td>0,05</td>
<td>0,05</td>
<td>0,07</td>
<td>0,07</td>
<td>0,07</td>
<td>0,07</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td>±0,28</td>
<td>±0,51</td>
<td>±0,70</td>
<td>±0,83</td>
<td>±0,91</td>
<td>±0,95</td>
<td>±0,93</td>
</tr>
</tbody>
</table>

O carregamento 3, assimétrico, provoca tensão normal máxima devida ao esforço normal no elemento 1, de valor -0,47 MPa, com a tensão de flexão alcançando ± 0,99 MPa no mesmo elemento. A tensão normal de flexão, para o carregamento 3, atinge seu valor máximo (± 1,98 MPa) no elemento 4, acompanhada por tensão devida ao esforço normal de -0,57 MPa.

De acordo com os valores da Tabela 9, as seções encontram-se solicitadas por baixos valores de tensões. Um caso desfavorável (tensão máxima de tração) ocorre no elemento 4, combinando-se os carregamentos 2 a 5. O valor da tensão na borda inferior do elemento devido a esses carregamentos é 0,08 + 0,93 + 1,98 + 0,26 + 0,07 + 0,83 - (0,57 + 1,41) = 2,43 MPa.

Os esforços cortantes apresentam valores baixos conforme pode-se verificar nos gráficos apresentados no Anexo.

De acordo com a análise, o arco formado por elementos retos que aproximam sua curvatura, desde que formado por um número grande de elementos, apresenta um comportamento semelhante ao arco formado por elementos curvos. Conforme comentamos no Capítulo 5 essa semelhança é utilizada na análise de estruturas de eixo curvo com elementos finitos retos que permitem formulação mais simples que os elementos curvos. No tipo de estrutura aqui analisada esta semelhança foi usada com fins de simplificar a execução dos elementos pré-moldados.
No caso limite de um número infinito de elementos o comportamento da estrutura assim formada seria idêntico ao de uma estrutura curva. Para a estrutura apresentada um número de 13 elementos, cada qual com cerca de 4,50m, foi suficiente. Um fator que pode ser usado como critério para obter o comportamento de estrutura curva com elementos retos é a diferença de inclinação entre elementos consecutivos. Na estrutura em questão o valor máximo dessa diferença é de cerca de 4° entre os elementos 1 e 2.

Uma observação deve ser feita com relação ao desenvolvimento dos esforços internos ao longo do eixo da estrutura. As forças distribuídas no comprimento das peças causam esforços secundários – que podem ser chamados de esforços isostáticos – que não existiriam com mesma intensidade no caso do eixo da estrutura ser realmente curvo.

Os momentos fletores e os esforços cortantes nos nós da estrutura formada por trechos retos aproximando uma curva, podem ser chamados de esforços hiperestáticos. Quando o carregamento atuante é tal que o eixo do arco é sua curva funicular, ou uma curva próxima da funicular, esses esforços são bastante pequenos. Os esforços isostáticos, nestes casos, alcançam valores da mesma ordem de grandeza dos esforços hiperestáticos.

Quando a curva aproximada do eixo não é a funicular do carregamento os esforços hiperestáticos apresentam valores bem maiores que os dos isostáticos. Isso pode ser observado comparando-se os diagramas de momentos fletores e esforços cortantes de carregamentos que tenham como funicular uma curva próxima àquela do eixo do arco aqui apresentado com os mesmos esforços causados por outros carregamentos.

Outra observação é relacionada à rigidez da estrutura assim formada que é menor que a rigidez de uma estrutura realmente curva.

7.2. Projeto II

Apresenta-se a seguir a cobertura de um ginásio de esportes – o Palacete de Esportes – construído em Roma, por Nervi, entre 1956-1957.
7.2.1. Descrição da estrutura.

O edifício tem planta circular e é constituído por uma cúpula em calota esférica sustentada por uma coroa perimetral de 36 pilares inclinados, em forma de Y, colocados radialmente (Figura 39).

O conjunto estrutural descarrega no solo por meio de um anel circular de fundação de 81,5m de diâmetro, feito em concreto protendido com espessura de 2,5m.

FIGURA 39. Vista externa da estrutura

A cúpula propriamente dita tem 59,2m de diâmetro e é constituída por 1620 elementos pré-moldados com forma romboidal. Sua altura máxima é de 21m (DESIDERI et al., 1982). A divisão da superfície esférica foi feita de tal modo que resultaram apenas 19 tipos diferentes de elementos (Figura 40).
FIGURA 40. Tipos de elementos

O material utilizado para a produção dos elementos foi o "ferro-cimento". A execução destes deu-se no solo sobre moldes apropriados feitos de alvenaria. A forma de um elemento tipo é mostrada na Figura 41, onde se mostra também a disposição da armadura, constituída por telas metálicas sob duas camadas de barras dispostas quase ortogonalmente.

Os elementos pré-moldados tinham espessura de 2,5cm e pesavam, em média, 250kgf. O uso do "ferro-cimento" possibilitou sua execução sem uso de contra-formas nas faces laterais, que são praticamente verticais.
FIGURA 41. Armação, vista isométrica e seção dos elementos tipo.

Para a montagem da estrutura, em primeiro lugar foram moldados no local os 36 pilares em Y, inclinados, sobre os quais a cúpula se apoia. A Figura 42 mostra os pilares inclinados e suas junções superior e inferior. Na parte inferior os pilares encontram-se com o anel perimetral de fundação. Os detalhes da ancoragem dos cabos de protensão são mostrados na Figura 42.b. Na parte superior a união entre a cúpula e os apoios inclinados é feita por ‘leques estruturais’, que devem transmitir 1/36 do empuxo da cobertura.

Os elementos pré-moldados foram colocados em sua posição definitiva sobre um cimbramento metálico disposto de tal maneira que cada elemento apoiava-se em dois pontos. O equipamento usado para manusear os elementos durante a montagem foi instalado no centro da construção onde há uma abertura de iluminação. Os elementos foram dispostos periféricamente em relação à construção para serem içados e posicionados.

Após o posicionamento dos elementos, realizou-se a concretagem da capa de concreto que torna a estrutura definitivamente unida. Este capaçamento tem, segundo KONCZ (1975), 3cm de espessura. Também foram
concretados os espaços entre os elementos, formando assim nervuras na superfície interior da cúpula.

FIGURA 42. Detalhes dos apoios: (a) variação da seção dos pilares inclinados; (b) ancoragem dos cabos de protensão e seção do anel de fundação.
As operações de montagem e de realização do capeamento levaram, segundo DESIDERI et al. (1982), 30 dias. Sobre a capa de concreto moldado no local foi aplicada uma camada de material isolante.

7.2.2. Análise da cúpula esférica.

Na Figura 43 apresentam-se as características geométricas da estrutura adotadas para o cálculo.

Para determinação do peso próprio da cúpula calcula-se uma espessura equivalente t_{eq}, obtida igualando-se o volume total de concreto da casca e das nervuras ao volume de uma casca com mesmas dimensões do raio e do ângulo central.

Efetuando-se os cálculos chega-se a

- Comprimento das nervuras $5600m$
- Seção das nervuras $0,1m \cdot 0,275m$
- Volume correspondente $154 \, m^3$
- Área da calota esférica $2 \pi \cdot 46.10,6 \approx 3060 \, m^2$
- $t_{eq} \approx 0,055 + 154/3060 \approx 0,105m$

Com essa espessura o peso por unidade de área da superfície da cúpula vale $25.0,105 \approx 2,60 \, kN/m^2$. A Tabela 10 mostra os valores dos esforços de membrana devidos a este carregamento e à força P introduzida pelo anel de borda superior. A força P é a soma do peso próprio do anel superior que tem seção $0,80m \cdot 0,40m$ — valor adotado com base em medidas tomadas em escala nos desenhos encontrados na bibliografia — com uma força devida ao peso do lanternim, adotada como $2,0 \, kN/m$.
FIGURA 43. Geometria da estrutura.
TABELA 10. Esforços de membrana para peso próprio (kN/m)

<table>
<thead>
<tr>
<th>Φ (°)</th>
<th>N'φ</th>
<th>N'θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>-114,7</td>
<td>-4,4</td>
</tr>
<tr>
<td>6</td>
<td>-98,1</td>
<td>-20,8</td>
</tr>
<tr>
<td>7</td>
<td>-88,1</td>
<td>-30,6</td>
</tr>
<tr>
<td>10</td>
<td>-74,1</td>
<td>-43,7</td>
</tr>
<tr>
<td>20</td>
<td>-65,3</td>
<td>-47,1</td>
</tr>
<tr>
<td>30</td>
<td>-65,8</td>
<td>-37,8</td>
</tr>
<tr>
<td>34</td>
<td>-66,7</td>
<td>-32,4</td>
</tr>
</tbody>
</table>

A Tabela 11 mostra os valores dos esforços de membrana para um carregamento q = 2,0 kN/m² uniformemente distribuído sobre a superfície da cúpula. O valor do carregamento q foi adotado com base em BILLINGTON (1982).

TABELA 11. Esforços de membrana devidos à sobrecarga q (kN/m)

<table>
<thead>
<tr>
<th>Φ (°)</th>
<th>N'φ</th>
<th>N'θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>-119,1</td>
</tr>
<tr>
<td>6</td>
<td>-18,3</td>
<td>-100,6</td>
</tr>
<tr>
<td>7</td>
<td>-29,4</td>
<td>-89,3</td>
</tr>
<tr>
<td>10</td>
<td>-45,2</td>
<td>-72,6</td>
</tr>
<tr>
<td>20</td>
<td>-57,8</td>
<td>-54,6</td>
</tr>
<tr>
<td>30</td>
<td>-62,3</td>
<td>-41,3</td>
</tr>
<tr>
<td>34</td>
<td>-63,9</td>
<td>-35,2</td>
</tr>
</tbody>
</table>

Pela teoria de membrana a cúpula está inteiramente comprimida. No entanto as descontinuidades de suas bordas devem introduzir esforços de flexão e de tração.

Para determinar as perturbações nas bordas da estrutura foram preparados dois modelos numéricos que reproduzem de maneira mais fiel o seu comportamento, cujos arquivos de dados e geometrias encontram-se listados no Anexo.
No primeiro, denominado TAPIRI, utilizou-se apenas elementos de pórtico espacial com seis graus de liberdade por nó. O segundo modelo, mais completo, combina elementos de pórtico espacial com elementos planos de casca, e denomina-se CASQUEL. A ligação entre os elementos de casca e de barra adjacentes foi simulada igualando-se as rotações e os deslocamentos verticais de seus nós.

Considere-se inicialmente o peso-próprio. Na tabela 13 apresentam-se os esforços normal (N) e momento fletor (M) nas barras da estrutura, dados pelos dois modelos para este carregamento, com referência à Figura 44.
<table>
<thead>
<tr>
<th>BARRA</th>
<th>TAPIRI</th>
<th>CASQUEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (kN)</td>
<td>M (kN.m)</td>
</tr>
<tr>
<td>62-94</td>
<td>-65,3</td>
<td>-5,3</td>
</tr>
<tr>
<td>62-95</td>
<td>-42,0</td>
<td>-5,2</td>
</tr>
<tr>
<td>94-95</td>
<td>-62,9</td>
<td>0,6</td>
</tr>
<tr>
<td>95-136</td>
<td>-36,5</td>
<td>-3,5</td>
</tr>
<tr>
<td>136-178</td>
<td>-30,7</td>
<td>-2,6</td>
</tr>
<tr>
<td>178-219</td>
<td>-29,6</td>
<td>2,2</td>
</tr>
<tr>
<td>219-261</td>
<td>-28,4</td>
<td>4,1</td>
</tr>
<tr>
<td>261-302</td>
<td>-27,1</td>
<td>5,3</td>
</tr>
<tr>
<td>302-344</td>
<td>-28,6</td>
<td>5,5</td>
</tr>
<tr>
<td>344-385</td>
<td>-27,6</td>
<td>6,8</td>
</tr>
<tr>
<td>385-427</td>
<td>-24,7</td>
<td>7,0</td>
</tr>
<tr>
<td>427-468</td>
<td>-23,9</td>
<td>6,8</td>
</tr>
<tr>
<td>468-510</td>
<td>-23,2</td>
<td>5,0</td>
</tr>
<tr>
<td>510-551</td>
<td>-22,7</td>
<td>3,9</td>
</tr>
<tr>
<td>551-593</td>
<td>-23,0</td>
<td>-2,6</td>
</tr>
<tr>
<td>593-648</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>648-703</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>703-758</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>758-813</td>
<td>-43,9</td>
<td>-20,5</td>
</tr>
</tbody>
</table>

A cúpula propriamente dita inicia-se a partir de \(\phi = 34^\circ \). Esta coordenada corresponde aos nós 94 e 95. As barras 62-94 e 62-95 fazem parte do leque de transição entre a cúpula e os apoios inclinados.

Os deslocamentos nodais verticais dos modelos, para peso próprio, são mostrados na Tabela 14, também com referência à Figura 44.
Os esforços nos elementos de casca, junto às bordas, são relacionados na Tabela 15.

TABELA 14. Deslocamentos verticais (cm)

<table>
<thead>
<tr>
<th>Nó</th>
<th>MODELO TAPIRI</th>
<th>MODELO CASQUEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>-0,33</td>
<td>-0,07</td>
</tr>
<tr>
<td>136=137</td>
<td>-0,64</td>
<td>-0,15</td>
</tr>
<tr>
<td>178</td>
<td>-1,04</td>
<td>-0,24</td>
</tr>
<tr>
<td>219=220</td>
<td>-1,43</td>
<td>-0,29</td>
</tr>
<tr>
<td>261</td>
<td>-1,74</td>
<td>-0,33</td>
</tr>
<tr>
<td>302=303</td>
<td>-1,94</td>
<td>-0,34</td>
</tr>
<tr>
<td>344</td>
<td>-1,97</td>
<td>-0,35</td>
</tr>
<tr>
<td>385=386</td>
<td>-1,83</td>
<td>-0,38</td>
</tr>
<tr>
<td>427</td>
<td>-1,49</td>
<td>-0,40</td>
</tr>
<tr>
<td>468=469</td>
<td>-0,94</td>
<td>-0,41</td>
</tr>
<tr>
<td>510</td>
<td>-0,19</td>
<td>-0,40</td>
</tr>
<tr>
<td>551=552</td>
<td>0,63</td>
<td>-0,37</td>
</tr>
<tr>
<td>593</td>
<td>1,54</td>
<td>-0,34</td>
</tr>
<tr>
<td>648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>703</td>
<td></td>
<td></td>
</tr>
<tr>
<td>758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>813 (=648)</td>
<td>2,89</td>
<td>-0,23</td>
</tr>
</tbody>
</table>

TABELA 15. Esforços nos elementos de casca junto às bordas, para peso próprio

<table>
<thead>
<tr>
<th>ESFORÇO</th>
<th>B. INFERIOR</th>
<th>B. SUPERIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_4 (kN/m)</td>
<td>-16,9</td>
<td>-26,1</td>
</tr>
<tr>
<td>N_0 (kN/m)</td>
<td>69,3</td>
<td>-4,3</td>
</tr>
<tr>
<td>M_4 (kN.m/m)</td>
<td>0,33</td>
<td>-0,13</td>
</tr>
</tbody>
</table>
Valores maiores do esforço N_4 ocorrem longe das bordas, alcançando -48,8 kN/m, de compressão. O esforço N_0, por sua vez alcança valores de compressão de -61,3 kN/m, também nas regiões afastadas da borda.

A seguir, apresentam-se os resultados obtidos com o modelo CASQUEL para outros carregamentos. Na Tabela 16 relacionam-se os valores de momento fletor e esforço normal nas barras da cúpula para os carregamentos: (2) variação de temperatura $\Delta t = +20^\circ C$; (3) sobrecarga de 2,0 kN/m2, agindo sobre a superfície da casca, com referência à Figura 44.

TABELA 16. Esforços nas barras escolhidas

<table>
<thead>
<tr>
<th>BARRA</th>
<th>$\Delta t = +20^\circ C$</th>
<th></th>
<th>$q = 2,0 \text{kN/m}^2$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (kN)</td>
<td>M (kN.m)</td>
<td>N (kN)</td>
<td>M (kN.m)</td>
</tr>
<tr>
<td>62-95</td>
<td>4,0</td>
<td>5,2</td>
<td>-64,2</td>
<td>-5,3</td>
</tr>
<tr>
<td>63-95</td>
<td>-9,4</td>
<td>4,2</td>
<td>-42,4</td>
<td>-4,2</td>
</tr>
<tr>
<td>95-96</td>
<td>-33,7</td>
<td>-0,6</td>
<td>32,7</td>
<td>0,6</td>
</tr>
<tr>
<td>95-136</td>
<td>3,1</td>
<td>-2,7</td>
<td>-12,3</td>
<td>0,6</td>
</tr>
<tr>
<td>136-178</td>
<td>3,5</td>
<td>-2,1</td>
<td>-11,2</td>
<td>1,7</td>
</tr>
<tr>
<td>178-219</td>
<td>3,4</td>
<td>-1,2</td>
<td>-10,3</td>
<td>1,7</td>
</tr>
<tr>
<td>219-261</td>
<td>3,2</td>
<td>-0,5</td>
<td>-10,3</td>
<td>1,1</td>
</tr>
<tr>
<td>261-302</td>
<td>3,2</td>
<td>0,0</td>
<td>-9,4</td>
<td>1,0</td>
</tr>
<tr>
<td>302-344</td>
<td>2,7</td>
<td>0,3</td>
<td>-9,8</td>
<td>-0,3</td>
</tr>
<tr>
<td>344-385</td>
<td>2,7</td>
<td>0,3</td>
<td>-9,3</td>
<td>-0,3</td>
</tr>
<tr>
<td>385-427</td>
<td>3,0</td>
<td>-0,3</td>
<td>-9,0</td>
<td>0,5</td>
</tr>
<tr>
<td>427-468</td>
<td>2,9</td>
<td>-0,5</td>
<td>-8,7</td>
<td>0,5</td>
</tr>
<tr>
<td>468-510</td>
<td>2,8</td>
<td>-0,9</td>
<td>-8,5</td>
<td>0,6</td>
</tr>
<tr>
<td>510-551</td>
<td>2,7</td>
<td>-1,0</td>
<td>-8,3</td>
<td>0,6</td>
</tr>
<tr>
<td>551-593</td>
<td>2,5</td>
<td>-1,0</td>
<td>-8,3</td>
<td>0,2</td>
</tr>
<tr>
<td>593-648</td>
<td>5,0</td>
<td>-1,6</td>
<td>-16,0</td>
<td>0,9</td>
</tr>
<tr>
<td>648-703</td>
<td>4,7</td>
<td>-1,1</td>
<td>-15,9</td>
<td>0,9</td>
</tr>
<tr>
<td>703-758</td>
<td>4,9</td>
<td>3,0</td>
<td>-15,9</td>
<td>-1,4</td>
</tr>
<tr>
<td>758-813</td>
<td>4,8</td>
<td>6,0</td>
<td>-15,8</td>
<td>-2,6</td>
</tr>
</tbody>
</table>
Na Tabela 17 apresentam-se os esforços atuantes nas bordas superior (BS) e inferior (BI) da casca para os mesmos carregamentos citados acima.

TABELA 17. Esforços nos elementos de casca do modelo CASQUEL

<table>
<thead>
<tr>
<th>AÇÃO</th>
<th>M_ϕ (kN.m/m)</th>
<th>N_ϕ (kN/m)</th>
<th>N_θ (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta t = + 20^\circ C$</td>
<td>0,36 (BI)</td>
<td>-5,1 (BI)</td>
<td>-54,7 (BI)</td>
</tr>
<tr>
<td></td>
<td>-0,23 (BS)</td>
<td>90,8 (BS)</td>
<td>-297,3 (BS)</td>
</tr>
<tr>
<td>$q = 2,0$ kN/m2</td>
<td>-0,13 (BI)</td>
<td>-40,8 (BI)</td>
<td>6,4 (BI)</td>
</tr>
<tr>
<td></td>
<td>0,33 (BS)</td>
<td>3,3 (BS)</td>
<td>0,6 (BS)</td>
</tr>
</tbody>
</table>

Para o carregamento 2 o esforço N_ϕ só tem valores elevados de tração junto à borda superior. Esse esforço é "amortecido" e conserva-se aproximadamente constante por toda a superfície da casca, com valores de compressão entre -5,0 e -10 kN/m. Junto à borda inferior há uma pequena tração, como pode ser visto na Tabela 17. Para o mesmo carregamento, o esforço N_θ apresenta valores elevados apenas junto às bordas – de compressão para o aumento de temperatura – conservando-se aproximadamente constante por toda a casca com baixos valores de tração. Se a temperatura diminui, esses esforços têm valores inversos.

Para o carregamento 3 o esforço N_ϕ apresenta o maior valor de tração na borda superior, sendo que esse esforço reverte rapidamente chegando ao seu valor mínimo – maior valor de compressão – na borda inferior, conforme dado na Tabela 17. O esforço N_θ é de compressão por quase toda a superfície, com valor máximo de - 47,2 kN/m. Junto às bordas esse valor é de tração, conforme dado na Tabela 17.

O modelo, da maneira como foi preparado, reproduz as variações dos esforços ao longo dos paralelos da casca melhor do que ao longo dos seus meridianos, principalmente para variação de temperatura. No entanto, o número de elementos utilizados pode ser considerado satisfatório tendo em vista os objetivos dessa análise e a grandeza dos esforços encontrados. A título de informação, um
refinamento localizado da malha, próximo às bordas, pode ser feito sem ter que
analisar-se novamente toda a estrutura com essa porção refinada. Ao invés disso,
pode-se isolar o trecho em que se quer melhorar os resultados e carregá-lo com as
ações e, ao longo do contorno onde foi cortado do resto da estrutura, carregá-lo com
os deslocamentos obtidos com a análise da estrutura inteira (COOK, 1987).

7.2.3. Comentários

A fim de especular sobre o comportamento real da estrutura
foram preparados os modelos apresentados no item anterior. É interessante chamar a
atenção para o fato de que na bibliografia pesquisada o único dado relativo ao cálculo
dessa estrutura faz menção à análise da cúpula como uma membrana (NERVI, 1963).

Os resultados obtidos com o modelo mais completo, que
combina elementos de pórtico espacial com elementos de casca, levam a concluir que
o comportamento de membrana é pronunciado nas regiões afastadas das bordas da
cúpula. Nestas regiões surgem efeitos de borda que são amortecidos e não se
propagam por toda a superfície. Comenta-se a seguir algumas diferenças verificadas
entre os dois modelos.

Com relação ao modelo de pórtico espacial o modelo
combinado apresenta menores valores de deslocamentos nodais e de esforços –
momento fleto e esforço normal – nas barras. Essas duas diferenças são devidas à
casca formada pelo capeamento que desempenha um papel importante no
comportamento da estrutura e, de acordo com os resultados mostrados na Tabela 15,
está solicitada por momentos fletores de valores baixos.

Os menores deslocamentos são facilmente entendidos, pois a
presença da casca confere maior rigidez ao sistema. É interessante comentar ainda
que os modos de deslocamentos dos dois modelos não são semelhantes. Isto pode ser
notado observando-se na Tabela 14 que, para o peso próprio, os deslocamentos
verticais junto ao anel superior têm sentidos diferentes para cada um deles.

Os menores esforços, por sua vez, são explicados pelo fato do
capeamento constituir-se em um novo elemento para equilibrar as ações. No entanto,
mais importante do que a redução dos esforços solicitantes é a predominância de esforços normais – de compressão – na maior parte da cúpula, causada pela presença da casca.

Uma outra diferença importante entre os dois modelos é notada comparando-se os valores do esforço normal na nervura circunferencial (barra 94-95) situada no ponto de encontro entre os leques de apoio e a cúpula propriamente dita. No modelo de pórtico espacial a barra encontra-se comprimida (\(N = -62,9 \) kN), enquanto que no modelo combinado a mesma barra, para o mesmo carregamento, encontra-se tracionada (\(N = 31,5 \) kN).

Isso deve ser atribuído à grande diferença de rigidez entre o trecho dos leques e o trecho da cúpula propriamente dita. No modelo de pórtico espacial essa diferença de rigidez não é tão acentuada quanto no modelo combinado. Neste último os leques foram modelados apenas com elementos de barra, ao contrário do resto da estrutura, introduzindo uma grande descontinuidade. O modelo que combina elementos de pórtico e de casca reproduz de maneira mais fiel o comportamento da estrutura.

A fim de ter idéia do nível de solicitação causado pelos valores encontrados no cálculo com o modelo combinado, tome-se por exemplo a borda inferior da cúpula. A força sobre a nervura circunferencial situada naquela borda é 31,5 kN (peso próprio) + 32,7 kN (sobrecarga) + 33,7kN (variação de temperatura tomada como negativa) = 97,9 kN, de acordo com as Tabelas 14 e 16. Pode-se fazer um cálculo em estado limite último que leva em conta apenas a armadura resistindo à força de tração. Usando-se aço CA-50A, e considerando para cálculo apenas metade do valor de sua tensão de escoamento, um valor bastante conservador, a área de aço necessária seria 2.1.4.97,9/50 = 5,50 cm², distribuída por toda a seção. Nesta borda resta ainda considerar-se a tração na casca formada pelo capeamento. Ao invés de considerar a tração na borda inferior da casca considera-se a seguir a tração na sua borda superior, cujos valores são mais elevados.

Na borda superior, de acordo com a Tabela 17, o esforço \(N_0 \) tem valor máximo de 297 kN/m, de tração considerando-se uma variação de temperatura negativa. A uma distância de 1m, correspondente a uma variação de 1°
no ângulo ϕ, esse valor cai para 200 kN/m. Um valor médio seria então $1,0m.(297kN/m + 200kN/m)/2 = 248,5$ kN. Repetindo-se o cálculo anterior a área de aço necessária seria $1,4.2.248,5/50,0 = 13,9 \text{ cm}^2$ distribuída em 1,0m de superfície da casca, desprezando-se o efeito favorável da força de compressão causada pelo peso próprio.

Pode-se também verificar a flexão meridional nas nervuras a partir de um cálculo simplificado tomando-se a seção não fissurada. Isso é feito considerando-se apenas as nervuras que fazem parte da cúpula propriamente dita, a partir da barra 136-178 nas Tabelas 14 e 16. Nesta barras, situadas na borda inferior da cúpula, as tensões normais de tração na face inferior valem -$(21,6 + 3,5 + 10,3)/(10.33) + 100.(1,5 + 1,2 + 1,7)/(10.33^2/6) = 0,14 \text{ kN/cm}^2$. Nas barras próximas ao anel superior (barra 758-813) a tensão normal máxima ocorre na face superior das nervuras com valor de -$(30,7 + 4,8 +15,8)/(10.33) + 100.(2,5 +6,0 + 2,6)/(10.33^2/6) = 0,46 \text{ kN/cm}^2$. Um cálculo de dimensionamento faz-se necessário para determinar a quantidade de armadura, mas para nossos objetivos esses valores de tensão calculados de maneira simplificada são suficientes. Convém lembrar que o dimensionamento da armadura de flexão meridional em cúpulas é, de acordo com BILLINGTON (1982), frequentemente feito de maneira conservadora desprezando-se o efeito favorável dos esforços de compressão.

Por fim, longe das bordas, os esforços de flexão são bastante pequenos, e os esforços normais de compressão apresentam valores que provocam tensões de pequena intensidade.
8. Comentários finais

Os projetos apresentados no capítulo 7 são exemplos que ilustram bem a utilização eficiente dos materiais e métodos construtivos disponíveis na época de sua realização. No entanto, se tais estruturas fossem projetadas atualmente, o estado presente de evolução da tecnologia da construção e do conhecimento de materiais teriam levado Nervi a proceder algumas alterações no projeto original, em particular com relação ao material utilizado.

Nas circunstâncias atuais, o “ferro-cemento” não se apresentaria com boas condições de ser empregado em obras de grande importância. Por outro lado, sistemas estruturais como aqueles projetados por Nervi apresentam características bastante interessantes, já comentadas. Acredita-se que o microconcreto armado apresente propriedades tais que viabilizariam nos dias de hoje a realização de projetos semelhantes. Comenta-se a seguir como alguns aspectos da construção dessas estruturas seriam alterados caso este material fosse empregado para a execução dos elementos descritos no capítulo anterior.

8.1. Aspectos construtivos.

Com relação à execução dos elementos, o uso de microconcreto associado às modernas técnicas de execução de formas, poderia simplificar bastante esta etapa.
Na Figura 45 apresentam-se duas seções feitas em "ferro-cimento" (Figura 45.a) e em microconcreto armado (Figura 45.b) que poderiam ser usadas para o mesmo fim. A seção de "ferro-cimento" é formada por barras dispostas entre várias camadas de tela de pequenas aberturas. A seção de microconcreto armado é formada com duas camadas de tela com maiores aberturas, e poderia ter adição de fibras. Esta última seção poderia ser moldada com espessura um pouco maior que a primeira. As características que a diferenciam da primeira seção tornam sua execução mais viável.

O uso de menor quantidade de telas mais espaçadas simplifica o posicionamento da armadura, etapa bastante trabalhosa e demorada na execução de peças de "ferro-cimento". As fibras adicionadas melhoram a trabalhabilidade do material. Por fim, o controle da espessura da peça e dos cobrimentos a serem dados à armadura é facilitado com uso de uma maior espessura.

FIGURA 45. Alterações na seção de um elemento de "ferro-cimento" com uso de microconcreto armado

Quanto à montagem da estrutura, a princípio não se teria nenhuma alteração com a introdução destes novos elementos. Os problemas associados a esta etapa do processo de produção são influenciados pelo peso e forma dos elementos, que não se alterariam de maneira significativa.
É importante chamar a atenção para o fato de que um método construtivo diferente poderia ser utilizado para a montagem da estrutura. No método utilizado por Nervi o volume de cimbramento, apesar de ser menor que aquele necessário para a construção de uma estrutura moldada no local, ainda é muito grande. Poderia pensar-se em alterar a forma e/ou a dimensão dos elementos visando minimizar o consumo de cimbramento para a montagem da estrutura.

8.2. Aspectos relacionados à durabilidade da estrutura

Os pequenos cobrimentos da armadura dos elementos de ‘ferro-cemento” podem comprometer bastante a durabilidade de uma estrutura formada por tais elementos ou, no mínimo, trazer problemas de manutenção durante sua vida útil. A adoção de maiores cobrimentos seria um ponto favorável à redução destes problemas. Esta seria uma das principais vantagens associadas ao uso de microconcreto armado.

As espessuras das peças de argamassa armada variam entre 25 e 40mm. Os cobrimentos da armadura dessas peças é geralmente inferior a 6 mm.

Com o microconcreto armado a espessura (t) das peças, calculada a partir da Figura 45, seria \(t = 2c + 2,0 + e \). Adotando-se o diâmetro dos fios da tela \(\phi = 3,0 \) a 4,2 mm espaçados de 5 a 10 cm, o cobrimento \(c = 12 \) a 15 mm e o espaçamento entre as duas camadas de tela, e = 5 mm, a espessura final estaria entre 35 e 45 mm. Poderia ser produzido um elemento leve como aqueles de ‘ferro-cemento” mas com uma maior garantia de durabilidade.

8.3. Aspectos estruturais

A identidade de material ‘infissurável” do ‘ferro-cemento” é muitas vezes apontada como a sua grande vantagem em relação ao concreto armado. Por outro lado, de acordo com HANAI (1987), esse é possivelmente um dos aspectos que contribuíram para a estagnação da tecnologia deste material. O concreto pretendido o supera nesse sentido por possibilitar o uso de materiais de alta
resistência em menor volume e com grande afinidade com a produção mecanizada. Portanto, o caráter de material ‘infissurável’ do ‘ferro-cemento’ é conseguido a um preço muito alto.

Resta uma dúvida. Perder essa característica traria prejuízos ao seu desempenho estrutural? Talvez essa pergunta possa ser formulada de maneira mais objetiva: elementos produzidos a partir de um concreto com menor consumo de telas poderiam ser usados nas estruturas analisadas no capítulo 7? De acordo com os resultados obtidos com as análises as estruturas estão submetidas a baixos valores de tensões de tração. Portanto, o controle da fissuração não deverá exigir grande quantidade de armaduras.

Tomando-se por exemplo a cobertura cilíndrica ondulada, pode-se pensar em substituir os elementos daquela estrutura por outros, semelhantes aos originais, porém produzidos em microconcreto armado. Na Figura 46.a apresenta-se uma possível forma para a seção.

![Diagrama da cobertura cilíndrica ondulada e cúpula esférica](image)

FIGURA 46. Seções possíveis de ser adotadas: (a) na cobertura cilíndrica ondulada e (b) na cúpula esférica.

Os materiais utilizados poderiam ser: concreto C - 30; duas camadas de telas de aço CA-60/B soldadas, com espaçamento de 10x10 cm e diâmetro dos fios de 4,2 mm; barras de aço CA-50/A como armadura complementar.
A espessura das peças de acordo com o que foi comentado no item 8.1 seria 2.42 + 2.12 + 5 = 37.4mm, portanto cerca de 40mm. Adotando-se as outras dimensões da seção de maneira a manter-se suas características geométricas da mesma ordem de grandeza que as do projeto original os valores dos esforços não se alterariam de maneira significativa. De acordo com os cálculos feitos no capítulo anterior a tensão de tração calculada com os esforços característicos para a condição mais desfavorável de carregamento alcança 2.43 Mpa. Um concreto com resistência a compressão de 30 MPa possui resistência a tração tal que suportaria esta tensão mesmo sem reforço de armadura.

Seguindo-se o mesmo raciocínio pode-se pensar em usar elementos como aqueles mostrados na Figura 46.b na cúpula esférica. Os valores das tensões de tração são, ou pequenos o suficiente para serem resistidos por um concreto de boa qualidade, ou de tal intensidade que baixas taxas de armaduras seriam suficientes para suportá-los, até mesmo sem grandes problemas de fissuração para o concreto. Além disso, de acordo com a análise, esses esforços estariam confinados a estreitas regiões próximas às bordas. Obviamente pequenas alterações na geometria, como aquelas mostradas na Figura 46.b, alterariam o peso próprio da estrutura e, consequentemente, os esforços causados por este carregamento. No entanto tais variações não seriam significativas e, além disso, os maiores esforços encontrados são devidos aos outros carregamentos, principalmente a variação de temperatura.

Concluindo, com relação aos aspectos estruturais, o bom desempenho das estruturas apresentadas frente a solicitações normais de tração é garantido em função do seu comportamento estrutural e não da utilização de um material de alta resistência a estes esforços. Assim, a utilização de elementos pré-moldados de microconcreto armado não é inviabilizada por aspectos de natureza estrutural. Aliás, as estruturas analisadas são compostas não apenas por elementos pré-moldados de "ferro-cemento", mas também por um capeamento de concreto moldado no local que, com certeza, não apresenta elevada resistência à fissuração.

É importante deixar claro que o dimensionamento completo das estruturas analisadas no capítulo anterior demanda cálculos bem mais extensos a partir dos resultados obtidos. Isso deve ser feito no sentido de quantificar de maneira
exata a armadura necessária, tanto para solicitações normais como solicitações tangenciais e também para assegurar as ligações entre os elementos, de acordo com as prescrições das Normas.

Também é importante lembrar que os valores calculados são teóricos. Neste trabalho não foi feita uma análise experimental que confirmasse a validade das hipóteses assumidas para o cálculo.

8.4. Aspectos relacionados à forma dos elementos

De acordo com o que se comentou, o microconcreto armado apresenta-se como uma boa opção para viabilizar a execução de estruturas semelhantes àquelas projetadas por Nervi. No entanto, algumas questões devem ser mais aprofundadas para possibilitar aplicações deste tipo. Essas questões foram relacionadas nos itens anteriores e são referentes às etapas de cálculo e construção dessas estruturas.

Outra etapa de um projeto, bastante comentada nos capítulos anteriores por sua grande importância, é a fase de concepção da estrutura, onde se definem sua forma e suas dimensões básicas. Ou, no caso de estruturas pré-moldadas, a fase em que definem-se essas características tanto para a estrutura como para os elementos que a constituem. Tais características irão influenciar tanto o comportamento da estrutura como seu processo construtivo. Particularmente com relação às cascas, ou estruturas “tipo-casca”, essa etapa desempenha um papel decisivo para que o projeto satisfaça seus requisitos funcionais.

Idéias simples, mas bastante úteis, como por exemplo as analogias físicas propostas por Isler e apresentadas na Tabela 1, têm sido desenvolvidas para auxiliar essa etapa da atividade de projeto.

Outras idéias que podem ser úteis para o projeto de estruturas são encontradas em PEARCE (1978), em trabalho que trata dos artifícios adotados pela natureza ao produzir estruturas.

Partindo dessas idéias procurou-se obter um elemento com forma tal que pudesse ser executado e unido aos demais que compõem a estrutura de
maneira simples e, principalmente, que tivesse espessura dentro dos limites das peças de microconcreto armado.

Em resumo, a forma obtida para o elemento, mostrada na Figura 47, é baseada no fato dos elementos que compõem as estruturas da natureza serem frequentemente arranjados de maneira a fazer 120° entre si, formando figuras semelhantes a hexágonos em sua superfície. Este seria o arranjo que requer mínima energia para manter a estrutura intacta, isto é, o arranjo que mobilizaria menos esforços resistentes da estrutura, já que na natureza há um constante processo de minimização de consumo dos recursos disponíveis.

Uma ilustração deste arranjo é obtida colocando-se lado a lado quatro bolhas de sabão. Estas não se agrupam da maneira mostrada à Figura 48.a, mas sim conforme a Figura 48.b. Por analogia, seria preferível segmentar uma estrutura da maneira mostrada na Figura 48.d em vez daquela mostrada na Figura 48.c.

FIGURA 47. Forma proposta de elementos pré-moldados para casca

(a)

(b)

FIGURA 48. Analogia utilizada para obter uma melhor forma para o elemento
Na Figura 49 apresenta-se um modelo construído com tais elementos. Utilizou-se dois tamanhos diferentes de elementos com a mesma forma, montando-se assim uma estrutura cilíndrica ondulada com seção circular. Com mais tipos de elementos de mesma forma pode-se pensar também em montar uma estrutura em cúpula.

FIGURA 49. Modelo de estrutura montada com apenas dois tipos de elementos com forma mostrada na Figura 47
Este modelo é apresentado com dois objetivos. Em primeiro lugar procura-se chamar a atenção para o fato de que ao mudar-se o material empregado na produção dos elementos abrem-se possibilidades de novas formas que possam aproveitar melhor as características deste "novo" material. Além disso procura-se ilustrar que as atividades preliminares de um projeto podem e devem ser mais valorizadas no intuito de se otimizar suas etapas posteriores, particularmente a construção.

Obviamente necessita-se de confirmação por algum modelo teórico ou experimental da eficiência estrutural de um sistema formado pelos elementos propostos, supondo que tais elementos possam ser produzidos por um processo construtivo viável. O modelo apresentado resolve tão somente o problema de se determinar uma geometria adequada a partir de uma analogia física. Ainda que o processo de definição dessa forma seja algo que envolve muitas variáveis além de valores de tensões e deformações, análises teóricas e experimentais do comportamento de uma estrutura podem sempre ajudar a melhorar uma forma já definida.
ANEXO - Arquivos do SAP90
ARCO1 - PAV. DE EXP. DE TURIM
SYSTEM
L = 4

JOINTS
1 X= 0 Y= 0
2 X= 405 Y= 195
3 X= 820 Y= 362
4 X= 1250 Y= 503
5 X= 1690 Y= 611
6 X= 2130 Y= 683
7 X= 2575 Y= 720
8 X= 2800 Y= 720
9 X= 3025 Y= 720
10 X= 3470 Y= 683
11 X= 3910 Y= 611
12 X= 4350 Y= 503
13 X= 4780 Y= 362
14 X= 5195 Y= 195
15 X= 5600 Y= 0

RESTRAINTS
1 15 1 R= 0,0,1,1,1,0
1 R= 1,1,1,1,1,0
15 R= 1,1,1,1,1,0

FRAME
NM= 7 NL= 2 Y= 0,0,0,-1

1 I= 8.2E6 A= 1800 E= 2800 TC= 10E-6 W= 0.045
2 I= 7.9E6 A= 1800 E= 2800 TC= 10E-6 W= 0.045
3 I= 7.6E6 A= 1800 E= 2800 TC= 10E-6 W= 0.045
4 I= 7.3E6 A= 1800 E= 2800 TC= 10E-6 W= 0.045
5 I= 7.0E6 A= 1800 E= 2800 TC= 10E-6 W= 0.045
6 I= 6.8E6 A= 2600 E= 2800 TC= 10E-6 W= 0.045
7 I= 6.5E6 A= 2600 E= 2800 TC= 10E-6 W= 0.045
1 WG= 0,-0.0375
1 1 2 M= 7 LP= 1,0 NSL= 1,2,1
2 2 3 M= 6 NSL= 1,2,1
3 3 4 M= 5 NSL= 1,2,1
4 4 5 M= 4 NSL= 1,2,1
5 5 6 M= 3 NSL= 1,2,1
6 6 7 M= 2 NSL= 1,2,1
7 7 8 M= 1 NSL= 1,2,1
8 8 9 M= 1 NSL= 1,2
9 9 10 M= 2 NSL= 1,2
10 10 11 M= 3 NSL= 1,2
FIGURA 50. Esforços devidos ao carregamento (1) – q = 3,75 kN/m
FIGURA 51. Esforços devidos ao carregamento (2) – Δt = + 20° C
FIGURA 52. Esforços devidos ao carregamento (3) – q = 3,75 kN/m na metade do vão do arco.
FIGURA 53. Esforços devidos ao carregamento (4) – peso próprio.
ARCO2 - PAV. DE EXP. DE TURIM

SYSTEM

$L = 1$

JOINTS

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>405</td>
<td>195</td>
</tr>
<tr>
<td>3</td>
<td>820</td>
<td>362</td>
</tr>
<tr>
<td>4</td>
<td>1250</td>
<td>503</td>
</tr>
<tr>
<td>5</td>
<td>1690</td>
<td>611</td>
</tr>
<tr>
<td>6</td>
<td>2130</td>
<td>683</td>
</tr>
<tr>
<td>7</td>
<td>2575</td>
<td>720</td>
</tr>
<tr>
<td>8</td>
<td>2800</td>
<td>720</td>
</tr>
<tr>
<td>9</td>
<td>3025</td>
<td>720</td>
</tr>
<tr>
<td>10</td>
<td>3470</td>
<td>683</td>
</tr>
<tr>
<td>11</td>
<td>3910</td>
<td>611</td>
</tr>
<tr>
<td>12</td>
<td>4350</td>
<td>503</td>
</tr>
<tr>
<td>13</td>
<td>4780</td>
<td>362</td>
</tr>
<tr>
<td>14</td>
<td>5195</td>
<td>195</td>
</tr>
<tr>
<td>15</td>
<td>5600</td>
<td>0</td>
</tr>
</tbody>
</table>

RESTRAINTS

<table>
<thead>
<tr>
<th></th>
<th>15</th>
<th>1</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td>0,0,1,1,1,0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>R</td>
<td>0,1,1,1,1,0</td>
<td></td>
</tr>
</tbody>
</table>

FRAME

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I= 8.2E6</td>
<td>A= 1800</td>
<td>E= 2800</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>I= 7.9E6</td>
<td>A= 1800</td>
<td>E= 2800</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>I= 7.6E6</td>
<td>A= 1800</td>
<td>E= 2800</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>I= 7.3E6</td>
<td>A= 1800</td>
<td>E= 2800</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>I= 7.0E6</td>
<td>A= 1800</td>
<td>E= 2800</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I= 6.8E6</td>
<td>A= 2600</td>
<td>E= 2800</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>I= 6.5E6</td>
<td>A= 2600</td>
<td>E= 2800</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>M= 7</td>
<td>LP= 1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>M= 6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>M= 5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>M= 4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>M= 3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>M= 2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>M= 1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>M= 1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>M= 2</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>M= 3</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>12</td>
<td>M= 4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>13</td>
<td>M= 5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>14</td>
<td>M= 6</td>
<td></td>
</tr>
</tbody>
</table>
DISPLACEMENTS

1 U = -0.5,0,0
15 U = 0.5,0

FIGURA 54. Esforços devida os ao carregamento (5) - ΔL = 1,0cm
TAPIRI - MODELO DE PORTICO ESPACIAL
SYSTEM
L = 1

JOINTS

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>676</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>677</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>40.75</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>678</td>
<td>40.75</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>33.4</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>697</td>
<td>33.4</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>33.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>716</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>58</td>
<td>29.6</td>
<td>0</td>
<td>9.4</td>
<td>0</td>
</tr>
<tr>
<td>717</td>
<td>29.6</td>
<td>0</td>
<td>12.4</td>
<td>0</td>
</tr>
<tr>
<td>68</td>
<td>25.7</td>
<td>0</td>
<td>12.3</td>
<td>0</td>
</tr>
<tr>
<td>727</td>
<td>28.5</td>
<td>0</td>
<td>16.4</td>
<td>0</td>
</tr>
<tr>
<td>123</td>
<td>24.4</td>
<td>0</td>
<td>13.2</td>
<td>0</td>
</tr>
<tr>
<td>782</td>
<td>24.4</td>
<td>0</td>
<td>16.2</td>
<td>0</td>
</tr>
<tr>
<td>151</td>
<td>23</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>810</td>
<td>23</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>206</td>
<td>21.6</td>
<td>0</td>
<td>14.8</td>
<td>0</td>
</tr>
<tr>
<td>865</td>
<td>21.6</td>
<td>0</td>
<td>17.8</td>
<td>0</td>
</tr>
<tr>
<td>234</td>
<td>20.2</td>
<td>0</td>
<td>15.5</td>
<td>0</td>
</tr>
<tr>
<td>893</td>
<td>20.2</td>
<td>0</td>
<td>18.5</td>
<td>0</td>
</tr>
<tr>
<td>289</td>
<td>18.7</td>
<td>0</td>
<td>16.2</td>
<td>0</td>
</tr>
<tr>
<td>948</td>
<td>18.7</td>
<td>0</td>
<td>19.2</td>
<td>0</td>
</tr>
<tr>
<td>317</td>
<td>17.2</td>
<td>0</td>
<td>16.9</td>
<td>0</td>
</tr>
<tr>
<td>976</td>
<td>17.2</td>
<td>0</td>
<td>19.9</td>
<td>0</td>
</tr>
<tr>
<td>372</td>
<td>15.7</td>
<td>0</td>
<td>17.4</td>
<td>0</td>
</tr>
<tr>
<td>1031</td>
<td>15.7</td>
<td>0</td>
<td>20.4</td>
<td>0</td>
</tr>
<tr>
<td>400</td>
<td>14.2</td>
<td>0</td>
<td>17.9</td>
<td>0</td>
</tr>
<tr>
<td>1059</td>
<td>14.2</td>
<td>0</td>
<td>20.9</td>
<td>0</td>
</tr>
<tr>
<td>455</td>
<td>12.7</td>
<td>0</td>
<td>18.4</td>
<td>0</td>
</tr>
<tr>
<td>1114</td>
<td>12.7</td>
<td>0</td>
<td>21.4</td>
<td>0</td>
</tr>
<tr>
<td>483</td>
<td>11.1</td>
<td>0</td>
<td>18.8</td>
<td>0</td>
</tr>
<tr>
<td>1142</td>
<td>11.1</td>
<td>0</td>
<td>21.8</td>
<td>0</td>
</tr>
<tr>
<td>538</td>
<td>9.6</td>
<td>0</td>
<td>19.2</td>
<td>0</td>
</tr>
<tr>
<td>1197</td>
<td>9.6</td>
<td>0</td>
<td>22.2</td>
<td>0</td>
</tr>
<tr>
<td>566</td>
<td>8</td>
<td>0</td>
<td>19.5</td>
<td>0</td>
</tr>
<tr>
<td>1225</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>621</td>
<td>4</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

RESTR AI NTS

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>676</td>
<td>1225</td>
<td>1</td>
<td>1.1,1</td>
<td>1,1,1</td>
</tr>
<tr>
<td>1</td>
<td>19</td>
<td>2</td>
<td>1.1,1</td>
<td>1,1,1</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>2</td>
<td>1.1,0</td>
<td>0,0,0</td>
</tr>
</tbody>
</table>

: NOS AUXILIARES
: ANEL INFERIOR APOIO II GENERO
40 56 2 R= 0,0,1,0,0,0 : APOIOS VERTICAIS
58 R= 0,1,0,1,0,1
68 R= 0,1,0,1,0,1
123 538 83 R= 0,1,0,1,0,1 : SIMETRIA EM X
621 R= 1,1,1,1,1,1 : NO AUXILIAR
67 R= 1,0,0,0,1,1
122 R= 1,0,0,0,1,1
150 565 83 R= 1,0,0,0,1,1 : SIMETRIA EM Y
675 R= 1,1,1,1,1,1
20 38 2 R= 1,1,1,1,1,1
39 57 2 R= 1,1,1,1,1,1
70 120 2 R= 1,1,1,1,1,1
151 205 2 R= 1,1,1,1,1,1
234 288 2 R= 1,1,1,1,1,1
317 371 2 R= 1,1,1,1,1,1
400 454 2 R= 1,1,1,1,1,1
483 537 2 R= 1,1,1,1,1,1
566 620 2 R= 1,1,1,1,1,1
623 673 2 R= 1,1,1,1,1,1 : NOS AUXILIARES
622 674 2 R= 1,1,0,1,1,1 : ANEL SUPERIOR ENGASTE ELÁSTICO

CONSTRANTS
624 674 2 C= 0,0,622,0,0,0

FRAME
NM= 7 Z= -1
1 SH=R T= 0.4,0.4 E= 28.4E6 W= 4 G= 12.2E6
2 SH=R T= 0.9,0.9 E= 28.4E6 W= 20 G= 12.2E6
3 SH=R T= 0.9,0.58 E= 28.4E6 W= 13 G= 12.2E6
4 SH=R T= 0.5,0.25 E= 28.4E6 W= 3.1 G= 12.2E6
5 SH=R T= 0.3,0.4 E= 28.4E6 W= 3 G= 12.2E6
6 SH=R T= 0.6,0.4 E= 28.4E6 W= 6 G= 12.2E6
7 SH=R T= 0.33,0.1 E= 28.4E6 W= 0.825 G= 12.2E6
1 2 21 M= 1,2,3 LP= 0.679
2 4 23 M= 1,2,3 LP= 0.681
3 6 25 M= 1,2,3 LP= 0.683
4 8 27 M= 1,2,3 LP= 0.685
5 10 29 M= 1,2,3 LP= 0.687
6 12 31 M= 1,2,3 LP= 0.689
7 14 33 M= 1,2,3 LP= 0.691
8 16 35 M= 1,2,3 LP= 0.693
9 18 37 M= 1,2,3 LP= 0.695
10 21 40 M= 6.5,3 LP= 0.716 G= 8,1,2,2
19 21 58 M= 3,4,3 LP= 0.698 G= 1,1,0,1
21 23 59 M= 3,4,3 LP= 0.700 G= 1,1,0,1
23 25 60 M= 3,4,3 LP= 0.702 G= 1,1,0,1
<table>
<thead>
<tr>
<th>M</th>
<th>LP</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0,704</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>27</td>
<td>0,706</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>29</td>
<td>0,708</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>31</td>
<td>0,710</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>33</td>
<td>0,712</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>35</td>
<td>0,714</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>37</td>
<td>0,717</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>39</td>
<td>0,718</td>
<td>3,1,0,2</td>
</tr>
<tr>
<td>43</td>
<td>0,719</td>
<td>3,1,0,2</td>
</tr>
<tr>
<td>47</td>
<td>0,720</td>
<td>3,1,0,2</td>
</tr>
<tr>
<td>51</td>
<td>0,721</td>
<td>3,1,0,2</td>
</tr>
<tr>
<td>55</td>
<td>0,722</td>
<td>3,1,0,2</td>
</tr>
<tr>
<td>59</td>
<td>0,723</td>
<td>3,1,0,2</td>
</tr>
<tr>
<td>63</td>
<td>0,724</td>
<td>3,1,0,2</td>
</tr>
<tr>
<td>67</td>
<td>0,725</td>
<td>3,1,0,2</td>
</tr>
<tr>
<td>71</td>
<td>0,726</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>73</td>
<td>0,727</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>74</td>
<td>0,728</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>75</td>
<td>0,730</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>76</td>
<td>0,732</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>77</td>
<td>0,734</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>78</td>
<td>0,736</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>79</td>
<td>0,738</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>80</td>
<td>0,740</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>81</td>
<td>0,742</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>82</td>
<td>0,744</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>83</td>
<td>0,746</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>84</td>
<td>0,748</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>85</td>
<td>0,750</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>86</td>
<td>0,752</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>87</td>
<td>0,754</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>88</td>
<td>0,756</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>89</td>
<td>0,758</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>90</td>
<td>0,760</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>91</td>
<td>0,762</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>92</td>
<td>0,764</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>93</td>
<td>0,766</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>94</td>
<td>0,768</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>95</td>
<td>0,770</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>96</td>
<td>0,772</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>97</td>
<td>0,774</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>98</td>
<td>0,776</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>99</td>
<td>0,778</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>100</td>
<td>0,780</td>
<td>ANEL INTERMEDIARIO</td>
</tr>
<tr>
<td>101</td>
<td>0,728</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>103</td>
<td>0,730</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>105</td>
<td>73</td>
<td>125</td>
</tr>
<tr>
<td>107</td>
<td>75</td>
<td>126</td>
</tr>
<tr>
<td>109</td>
<td>77</td>
<td>127</td>
</tr>
<tr>
<td>111</td>
<td>79</td>
<td>128</td>
</tr>
<tr>
<td>113</td>
<td>81</td>
<td>129</td>
</tr>
<tr>
<td>115</td>
<td>83</td>
<td>130</td>
</tr>
<tr>
<td>117</td>
<td>85</td>
<td>131</td>
</tr>
<tr>
<td>119</td>
<td>87</td>
<td>132</td>
</tr>
<tr>
<td>121</td>
<td>89</td>
<td>133</td>
</tr>
<tr>
<td>123</td>
<td>91</td>
<td>134</td>
</tr>
<tr>
<td>125</td>
<td>93</td>
<td>135</td>
</tr>
<tr>
<td>127</td>
<td>95</td>
<td>136</td>
</tr>
<tr>
<td>129</td>
<td>97</td>
<td>137</td>
</tr>
<tr>
<td>131</td>
<td>99</td>
<td>138</td>
</tr>
<tr>
<td>133</td>
<td>101</td>
<td>139</td>
</tr>
<tr>
<td>135</td>
<td>103</td>
<td>140</td>
</tr>
<tr>
<td>137</td>
<td>105</td>
<td>141</td>
</tr>
<tr>
<td>139</td>
<td>107</td>
<td>142</td>
</tr>
<tr>
<td>141</td>
<td>109</td>
<td>143</td>
</tr>
<tr>
<td>143</td>
<td>111</td>
<td>144</td>
</tr>
<tr>
<td>145</td>
<td>113</td>
<td>145</td>
</tr>
<tr>
<td>147</td>
<td>115</td>
<td>146</td>
</tr>
<tr>
<td>149</td>
<td>117</td>
<td>147</td>
</tr>
<tr>
<td>151</td>
<td>119</td>
<td>148</td>
</tr>
<tr>
<td>153</td>
<td>121</td>
<td>149</td>
</tr>
<tr>
<td>155</td>
<td>123</td>
<td>152</td>
</tr>
<tr>
<td>156</td>
<td>124</td>
<td>152</td>
</tr>
<tr>
<td>158</td>
<td>125</td>
<td>154</td>
</tr>
<tr>
<td>160</td>
<td>126</td>
<td>156</td>
</tr>
<tr>
<td>162</td>
<td>127</td>
<td>158</td>
</tr>
<tr>
<td>164</td>
<td>128</td>
<td>160</td>
</tr>
<tr>
<td>166</td>
<td>129</td>
<td>162</td>
</tr>
<tr>
<td>168</td>
<td>130</td>
<td>164</td>
</tr>
<tr>
<td>170</td>
<td>131</td>
<td>166</td>
</tr>
<tr>
<td>172</td>
<td>132</td>
<td>168</td>
</tr>
<tr>
<td>174</td>
<td>133</td>
<td>170</td>
</tr>
<tr>
<td>176</td>
<td>134</td>
<td>172</td>
</tr>
<tr>
<td>178</td>
<td>135</td>
<td>174</td>
</tr>
<tr>
<td>180</td>
<td>136</td>
<td>176</td>
</tr>
<tr>
<td>182</td>
<td>137</td>
<td>178</td>
</tr>
<tr>
<td>184</td>
<td>138</td>
<td>180</td>
</tr>
<tr>
<td>186</td>
<td>139</td>
<td>182</td>
</tr>
<tr>
<td>188</td>
<td>140</td>
<td>184</td>
</tr>
<tr>
<td>190</td>
<td>141</td>
<td>186</td>
</tr>
<tr>
<td>192</td>
<td>142</td>
<td>188</td>
</tr>
<tr>
<td>194</td>
<td>143</td>
<td>190</td>
</tr>
<tr>
<td>ID</td>
<td>Value1</td>
<td>Value2</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>196</td>
<td>144</td>
<td>192</td>
</tr>
<tr>
<td>198</td>
<td>145</td>
<td>194</td>
</tr>
<tr>
<td>200</td>
<td>146</td>
<td>196</td>
</tr>
<tr>
<td>202</td>
<td>147</td>
<td>198</td>
</tr>
<tr>
<td>204</td>
<td>148</td>
<td>200</td>
</tr>
<tr>
<td>206</td>
<td>149</td>
<td>202</td>
</tr>
<tr>
<td>208</td>
<td>150</td>
<td>204</td>
</tr>
<tr>
<td>209</td>
<td>152</td>
<td>206</td>
</tr>
<tr>
<td>211</td>
<td>154</td>
<td>207</td>
</tr>
<tr>
<td>213</td>
<td>156</td>
<td>208</td>
</tr>
<tr>
<td>215</td>
<td>158</td>
<td>209</td>
</tr>
<tr>
<td>217</td>
<td>160</td>
<td>210</td>
</tr>
<tr>
<td>219</td>
<td>162</td>
<td>211</td>
</tr>
<tr>
<td>221</td>
<td>164</td>
<td>212</td>
</tr>
<tr>
<td>223</td>
<td>166</td>
<td>213</td>
</tr>
<tr>
<td>225</td>
<td>168</td>
<td>214</td>
</tr>
<tr>
<td>227</td>
<td>170</td>
<td>215</td>
</tr>
<tr>
<td>229</td>
<td>172</td>
<td>216</td>
</tr>
<tr>
<td>231</td>
<td>174</td>
<td>217</td>
</tr>
<tr>
<td>233</td>
<td>176</td>
<td>218</td>
</tr>
<tr>
<td>235</td>
<td>178</td>
<td>219</td>
</tr>
<tr>
<td>237</td>
<td>180</td>
<td>220</td>
</tr>
<tr>
<td>239</td>
<td>182</td>
<td>221</td>
</tr>
<tr>
<td>241</td>
<td>184</td>
<td>222</td>
</tr>
<tr>
<td>243</td>
<td>186</td>
<td>223</td>
</tr>
<tr>
<td>245</td>
<td>188</td>
<td>224</td>
</tr>
<tr>
<td>247</td>
<td>190</td>
<td>225</td>
</tr>
<tr>
<td>249</td>
<td>192</td>
<td>226</td>
</tr>
<tr>
<td>251</td>
<td>194</td>
<td>227</td>
</tr>
<tr>
<td>253</td>
<td>196</td>
<td>228</td>
</tr>
<tr>
<td>255</td>
<td>198</td>
<td>229</td>
</tr>
<tr>
<td>257</td>
<td>200</td>
<td>230</td>
</tr>
<tr>
<td>259</td>
<td>202</td>
<td>231</td>
</tr>
<tr>
<td>261</td>
<td>204</td>
<td>232</td>
</tr>
<tr>
<td>263</td>
<td>206</td>
<td>235</td>
</tr>
<tr>
<td>264</td>
<td>207</td>
<td>235</td>
</tr>
<tr>
<td>266</td>
<td>208</td>
<td>237</td>
</tr>
<tr>
<td>268</td>
<td>209</td>
<td>239</td>
</tr>
<tr>
<td>270</td>
<td>210</td>
<td>241</td>
</tr>
<tr>
<td>272</td>
<td>211</td>
<td>243</td>
</tr>
<tr>
<td>274</td>
<td>212</td>
<td>245</td>
</tr>
<tr>
<td>276</td>
<td>213</td>
<td>247</td>
</tr>
<tr>
<td>278</td>
<td>214</td>
<td>249</td>
</tr>
<tr>
<td>280</td>
<td>215</td>
<td>251</td>
</tr>
<tr>
<td>282</td>
<td>216</td>
<td>253</td>
</tr>
<tr>
<td>284</td>
<td>217</td>
<td>255</td>
</tr>
</tbody>
</table>

: TRECHO 3
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>M= 7</th>
<th>LP= 0.877</th>
<th>G= 1,1,0,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>286</td>
<td>218</td>
<td>257</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>288</td>
<td>219</td>
<td>259</td>
<td></td>
<td>LP= 0.878</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>290</td>
<td>220</td>
<td>261</td>
<td></td>
<td>LP= 0.879</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>292</td>
<td>221</td>
<td>263</td>
<td></td>
<td>LP= 0.880</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>294</td>
<td>222</td>
<td>265</td>
<td></td>
<td>LP= 0.881</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>296</td>
<td>223</td>
<td>267</td>
<td></td>
<td>LP= 0.882</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>298</td>
<td>224</td>
<td>269</td>
<td></td>
<td>LP= 0.883</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>300</td>
<td>225</td>
<td>271</td>
<td></td>
<td>LP= 0.884</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>302</td>
<td>226</td>
<td>273</td>
<td></td>
<td>LP= 0.885</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>304</td>
<td>227</td>
<td>275</td>
<td></td>
<td>LP= 0.886</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>306</td>
<td>228</td>
<td>277</td>
<td></td>
<td>LP= 0.887</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>308</td>
<td>229</td>
<td>279</td>
<td></td>
<td>LP= 0.888</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>310</td>
<td>230</td>
<td>281</td>
<td></td>
<td>LP= 0.889</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>312</td>
<td>231</td>
<td>283</td>
<td></td>
<td>LP= 0.890</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>314</td>
<td>232</td>
<td>285</td>
<td></td>
<td>LP= 0.891</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>316</td>
<td>233</td>
<td>287</td>
<td></td>
<td>LP= 0.892</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>317</td>
<td>235</td>
<td>289</td>
<td></td>
<td>LP= 0.894</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>319</td>
<td>237</td>
<td>290</td>
<td></td>
<td>LP= 0.896</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>321</td>
<td>239</td>
<td>291</td>
<td></td>
<td>LP= 0.898</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>323</td>
<td>241</td>
<td>292</td>
<td></td>
<td>LP= 0.900</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>325</td>
<td>243</td>
<td>293</td>
<td></td>
<td>LP= 0.902</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>327</td>
<td>245</td>
<td>294</td>
<td></td>
<td>LP= 0.904</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>329</td>
<td>247</td>
<td>295</td>
<td></td>
<td>LP= 0.906</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>331</td>
<td>249</td>
<td>296</td>
<td></td>
<td>LP= 0.908</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>333</td>
<td>251</td>
<td>297</td>
<td></td>
<td>LP= 0.910</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>335</td>
<td>253</td>
<td>298</td>
<td></td>
<td>LP= 0.912</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>337</td>
<td>255</td>
<td>299</td>
<td></td>
<td>LP= 0.914</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>339</td>
<td>257</td>
<td>300</td>
<td></td>
<td>LP= 0.916</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>341</td>
<td>259</td>
<td>301</td>
<td></td>
<td>LP= 0.918</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>343</td>
<td>261</td>
<td>302</td>
<td></td>
<td>LP= 0.920</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>345</td>
<td>263</td>
<td>303</td>
<td></td>
<td>LP= 0.922</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>347</td>
<td>265</td>
<td>304</td>
<td></td>
<td>LP= 0.924</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>349</td>
<td>267</td>
<td>305</td>
<td></td>
<td>LP= 0.926</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>351</td>
<td>269</td>
<td>306</td>
<td></td>
<td>LP= 0.928</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>353</td>
<td>271</td>
<td>307</td>
<td></td>
<td>LP= 0.930</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>355</td>
<td>273</td>
<td>308</td>
<td></td>
<td>LP= 0.932</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>357</td>
<td>275</td>
<td>309</td>
<td></td>
<td>LP= 0.934</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>359</td>
<td>277</td>
<td>310</td>
<td></td>
<td>LP= 0.936</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>361</td>
<td>279</td>
<td>311</td>
<td></td>
<td>LP= 0.938</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>363</td>
<td>281</td>
<td>312</td>
<td></td>
<td>LP= 0.940</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>365</td>
<td>283</td>
<td>313</td>
<td></td>
<td>LP= 0.942</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>367</td>
<td>285</td>
<td>314</td>
<td></td>
<td>LP= 0.944</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>369</td>
<td>287</td>
<td>315</td>
<td></td>
<td>LP= 0.946</td>
<td>G= 1,1,0,1</td>
</tr>
<tr>
<td>371</td>
<td>289</td>
<td>318</td>
<td></td>
<td>LP= 0.948</td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>290</td>
<td>318</td>
<td></td>
<td>LP= 0.949</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td>374</td>
<td>291</td>
<td>320</td>
<td></td>
<td>LP= 0.950</td>
<td>G= 1,1,0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>376</td>
<td>292</td>
<td>322</td>
<td>M=7</td>
<td>LP=0.951</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>378</td>
<td>293</td>
<td>324</td>
<td>M=7</td>
<td>LP=0.952</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>380</td>
<td>294</td>
<td>326</td>
<td>M=7</td>
<td>LP=0.953</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>382</td>
<td>295</td>
<td>328</td>
<td>M=7</td>
<td>LP=0.954</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>384</td>
<td>296</td>
<td>330</td>
<td>M=7</td>
<td>LP=0.955</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>386</td>
<td>297</td>
<td>332</td>
<td>M=7</td>
<td>LP=0.956</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>388</td>
<td>298</td>
<td>334</td>
<td>M=7</td>
<td>LP=0.957</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>390</td>
<td>299</td>
<td>336</td>
<td>M=7</td>
<td>LP=0.958</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>392</td>
<td>300</td>
<td>338</td>
<td>M=7</td>
<td>LP=0.959</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>394</td>
<td>301</td>
<td>340</td>
<td>M=7</td>
<td>LP=0.960</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>396</td>
<td>302</td>
<td>342</td>
<td>M=7</td>
<td>LP=0.961</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>398</td>
<td>303</td>
<td>344</td>
<td>M=7</td>
<td>LP=0.962</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>400</td>
<td>304</td>
<td>346</td>
<td>M=7</td>
<td>LP=0.963</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>402</td>
<td>305</td>
<td>348</td>
<td>M=7</td>
<td>LP=0.964</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>404</td>
<td>306</td>
<td>350</td>
<td>M=7</td>
<td>LP=0.965</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>406</td>
<td>307</td>
<td>352</td>
<td>M=7</td>
<td>LP=0.966</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>408</td>
<td>308</td>
<td>354</td>
<td>M=7</td>
<td>LP=0.967</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>410</td>
<td>309</td>
<td>356</td>
<td>M=7</td>
<td>LP=0.968</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>412</td>
<td>310</td>
<td>358</td>
<td>M=7</td>
<td>LP=0.969</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>414</td>
<td>311</td>
<td>360</td>
<td>M=7</td>
<td>LP=0.970</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>416</td>
<td>312</td>
<td>362</td>
<td>M=7</td>
<td>LP=0.971</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>418</td>
<td>313</td>
<td>364</td>
<td>M=7</td>
<td>LP=0.972</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>420</td>
<td>314</td>
<td>366</td>
<td>M=7</td>
<td>LP=0.973</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>422</td>
<td>315</td>
<td>368</td>
<td>M=7</td>
<td>LP=0.974</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>424</td>
<td>316</td>
<td>370</td>
<td>M=7</td>
<td>LP=0.975</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>425</td>
<td>318</td>
<td>372</td>
<td>M=7</td>
<td>LP=0.977</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>427</td>
<td>320</td>
<td>373</td>
<td>M=7</td>
<td>LP=0.979</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>429</td>
<td>322</td>
<td>374</td>
<td>M=7</td>
<td>LP=0.981</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>431</td>
<td>324</td>
<td>375</td>
<td>M=7</td>
<td>LP=0.983</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>433</td>
<td>326</td>
<td>376</td>
<td>M=7</td>
<td>LP=0.985</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>435</td>
<td>328</td>
<td>377</td>
<td>M=7</td>
<td>LP=0.987</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>437</td>
<td>330</td>
<td>378</td>
<td>M=7</td>
<td>LP=0.989</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>439</td>
<td>332</td>
<td>379</td>
<td>M=7</td>
<td>LP=0.991</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>441</td>
<td>334</td>
<td>380</td>
<td>M=7</td>
<td>LP=0.993</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>443</td>
<td>336</td>
<td>381</td>
<td>M=7</td>
<td>LP=0.995</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>445</td>
<td>338</td>
<td>382</td>
<td>M=7</td>
<td>LP=0.997</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>447</td>
<td>340</td>
<td>383</td>
<td>M=7</td>
<td>LP=0.999</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>449</td>
<td>342</td>
<td>384</td>
<td>M=7</td>
<td>LP=0.1001</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>451</td>
<td>344</td>
<td>385</td>
<td>M=7</td>
<td>LP=0.1003</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>453</td>
<td>346</td>
<td>386</td>
<td>M=7</td>
<td>LP=0.1005</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>455</td>
<td>348</td>
<td>387</td>
<td>M=7</td>
<td>LP=0.1007</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>457</td>
<td>350</td>
<td>388</td>
<td>M=7</td>
<td>LP=0.1009</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>459</td>
<td>352</td>
<td>389</td>
<td>M=7</td>
<td>LP=0.1011</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>461</td>
<td>354</td>
<td>390</td>
<td>M=7</td>
<td>LP=0.1013</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>463</td>
<td>356</td>
<td>391</td>
<td>M=7</td>
<td>LP=0.1015</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>465</td>
<td>358</td>
<td>392</td>
<td>M=7</td>
<td>LP=0.1017</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>467</td>
<td>360</td>
<td>393</td>
<td>M=7</td>
<td>LP=0,1019</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>469</td>
<td>362</td>
<td>394</td>
<td>M=7</td>
<td>LP=0,1021</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>471</td>
<td>364</td>
<td>395</td>
<td>M=7</td>
<td>LP=0,1023</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>473</td>
<td>366</td>
<td>396</td>
<td>M=7</td>
<td>LP=0,1025</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>475</td>
<td>368</td>
<td>397</td>
<td>M=7</td>
<td>LP=0,1027</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>477</td>
<td>370</td>
<td>398</td>
<td>M=7</td>
<td>LP=0,1029</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>372</td>
<td>401</td>
<td>M=7</td>
<td>LP=0,1031</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>373</td>
<td>401</td>
<td>M=7</td>
<td>LP=0,1032</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>482</td>
<td>374</td>
<td>403</td>
<td>M=7</td>
<td>LP=0,1033</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>484</td>
<td>375</td>
<td>405</td>
<td>M=7</td>
<td>LP=0,1034</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>486</td>
<td>376</td>
<td>407</td>
<td>M=7</td>
<td>LP=0,1035</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>488</td>
<td>377</td>
<td>409</td>
<td>M=7</td>
<td>LP=0,1036</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>490</td>
<td>378</td>
<td>411</td>
<td>M=7</td>
<td>LP=0,1037</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>492</td>
<td>379</td>
<td>413</td>
<td>M=7</td>
<td>LP=0,1038</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>494</td>
<td>380</td>
<td>415</td>
<td>M=7</td>
<td>LP=0,1039</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>496</td>
<td>381</td>
<td>417</td>
<td>M=7</td>
<td>LP=0,1040</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>498</td>
<td>382</td>
<td>419</td>
<td>M=7</td>
<td>LP=0,1041</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>500</td>
<td>383</td>
<td>421</td>
<td>M=7</td>
<td>LP=0,1042</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>502</td>
<td>384</td>
<td>423</td>
<td>M=7</td>
<td>LP=0,1043</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>504</td>
<td>385</td>
<td>425</td>
<td>M=7</td>
<td>LP=0,1044</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>506</td>
<td>386</td>
<td>427</td>
<td>M=7</td>
<td>LP=0,1045</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>508</td>
<td>387</td>
<td>429</td>
<td>M=7</td>
<td>LP=0,1046</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>510</td>
<td>388</td>
<td>431</td>
<td>M=7</td>
<td>LP=0,1047</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>512</td>
<td>389</td>
<td>433</td>
<td>M=7</td>
<td>LP=0,1048</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>514</td>
<td>390</td>
<td>435</td>
<td>M=7</td>
<td>LP=0,1049</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>516</td>
<td>391</td>
<td>437</td>
<td>M=7</td>
<td>LP=0,1050</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>518</td>
<td>392</td>
<td>439</td>
<td>M=7</td>
<td>LP=0,1051</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>520</td>
<td>393</td>
<td>441</td>
<td>M=7</td>
<td>LP=0,1052</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>522</td>
<td>394</td>
<td>443</td>
<td>M=7</td>
<td>LP=0,1053</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>524</td>
<td>395</td>
<td>445</td>
<td>M=7</td>
<td>LP=0,1054</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>526</td>
<td>396</td>
<td>447</td>
<td>M=7</td>
<td>LP=0,1055</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>528</td>
<td>397</td>
<td>449</td>
<td>M=7</td>
<td>LP=0,1056</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>530</td>
<td>398</td>
<td>451</td>
<td>M=7</td>
<td>LP=0,1057</td>
<td>G=1,1,0,2</td>
</tr>
<tr>
<td>532</td>
<td>399</td>
<td>453</td>
<td>M=7</td>
<td>LP=0,1058</td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>401</td>
<td>455</td>
<td>M=7</td>
<td>LP=0,1060</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>535</td>
<td>403</td>
<td>456</td>
<td>M=7</td>
<td>LP=0,1062</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>537</td>
<td>405</td>
<td>457</td>
<td>M=7</td>
<td>LP=0,1064</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>539</td>
<td>407</td>
<td>458</td>
<td>M=7</td>
<td>LP=0,1066</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>541</td>
<td>409</td>
<td>459</td>
<td>M=7</td>
<td>LP=0,1068</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>543</td>
<td>411</td>
<td>460</td>
<td>M=7</td>
<td>LP=0,1070</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>545</td>
<td>413</td>
<td>461</td>
<td>M=7</td>
<td>LP=0,1072</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>547</td>
<td>415</td>
<td>462</td>
<td>M=7</td>
<td>LP=0,1074</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>549</td>
<td>417</td>
<td>463</td>
<td>M=7</td>
<td>LP=0,1076</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>551</td>
<td>419</td>
<td>464</td>
<td>M=7</td>
<td>LP=0,1078</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>553</td>
<td>421</td>
<td>465</td>
<td>M=7</td>
<td>LP=0,1080</td>
<td>G=1,1,0,1</td>
</tr>
<tr>
<td>555</td>
<td>423</td>
<td>466</td>
<td>M=7</td>
<td>LP=0,1082</td>
<td>G=1,1,0,1</td>
</tr>
</tbody>
</table>
557 425 467 M=7 LP=0,1084 G=1,1,0,1
559 427 468 M=7 LP=0,1086 G=1,1,0,1
561 429 469 M=7 LP=0,1088 G=1,1,0,1
563 431 470 M=7 LP=0,1090 G=1,1,0,1
565 433 471 M=7 LP=0,1092 G=1,1,0,1
567 435 472 M=7 LP=0,1094 G=1,1,0,1
569 437 473 M=7 LP=0,1096 G=1,1,0,1
571 439 474 M=7 LP=0,1098 G=1,1,0,1
573 441 475 M=7 LP=0,1100 G=1,1,0,1
575 443 476 M=7 LP=0,1102 G=1,1,0,1
577 445 477 M=7 LP=0,1104 G=1,1,0,1
579 447 478 M=7 LP=0,1106 G=1,1,0,1
581 449 479 M=7 LP=0,1108 G=1,1,0,1
583 451 480 M=7 LP=0,1110 G=1,1,0,1
585 453 481 M=7 LP=0,1112 G=1,1,0,1 : TRECCH 9
587 455 484 M=7 LP=0,1114
588 456 484 M=7 LP=0,1115 G=1,1,0,2
590 457 486 M=7 LP=0,1116 G=1,1,0,2
592 458 488 M=7 LP=0,1117 G=1,1,0,2
594 459 490 M=7 LP=0,1118 G=1,1,0,2
596 460 492 M=7 LP=0,1119 G=1,1,0,2
598 461 494 M=7 LP=0,1120 G=1,1,0,2
600 462 496 M=7 LP=0,1121 G=1,1,0,2
602 463 498 M=7 LP=0,1122 G=1,1,0,2
604 464 500 M=7 LP=0,1123 G=1,1,0,2
606 465 502 M=7 LP=0,1124 G=1,1,0,2
608 466 504 M=7 LP=0,1125 G=1,1,0,2
610 467 506 M=7 LP=0,1126 G=1,1,0,2
612 468 508 M=7 LP=0,1127 G=1,1,0,2
614 469 510 M=7 LP=0,1128 G=1,1,0,2
616 470 512 M=7 LP=0,1129 G=1,1,0,2
618 471 514 M=7 LP=0,1130 G=1,1,0,2
620 472 516 M=7 LP=0,1131 G=1,1,0,2
622 473 518 M=7 LP=0,1132 G=1,1,0,2
624 474 520 M=7 LP=0,1133 G=1,1,0,2
626 475 522 M=7 LP=0,1134 G=1,1,0,2
628 476 524 M=7 LP=0,1135 G=1,1,0,2
630 477 526 M=7 LP=0,1136 G=1,1,0,2
632 478 528 M=7 LP=0,1137 G=1,1,0,2
634 479 530 M=7 LP=0,1138 G=1,1,0,2
636 480 532 M=7 LP=0,1139 G=1,1,0,2
638 481 534 M=7 LP=0,1140 G=1,1,0,2
640 482 536 M=7 LP=0,1141 : TRECCH 10
641 484 538 M=7 LP=0,1143 G=1,1,0,1
643 486 539 M=7 LP=0,1145 G=1,1,0,1
645 488 540 M=7 LP=0,1147 G=1,1,0,1
<table>
<thead>
<tr>
<th>Number</th>
<th>M=7</th>
<th>LP</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>647</td>
<td>490</td>
<td>541</td>
<td>0.1149</td>
</tr>
<tr>
<td>649</td>
<td>492</td>
<td>542</td>
<td>0.1151</td>
</tr>
<tr>
<td>651</td>
<td>494</td>
<td>543</td>
<td>0.1153</td>
</tr>
<tr>
<td>653</td>
<td>496</td>
<td>544</td>
<td>0.1155</td>
</tr>
<tr>
<td>655</td>
<td>498</td>
<td>545</td>
<td>0.1157</td>
</tr>
<tr>
<td>657</td>
<td>500</td>
<td>546</td>
<td>0.1159</td>
</tr>
<tr>
<td>659</td>
<td>502</td>
<td>547</td>
<td>0.1161</td>
</tr>
<tr>
<td>661</td>
<td>504</td>
<td>548</td>
<td>0.1163</td>
</tr>
<tr>
<td>663</td>
<td>506</td>
<td>549</td>
<td>0.1165</td>
</tr>
<tr>
<td>665</td>
<td>508</td>
<td>550</td>
<td>0.1167</td>
</tr>
<tr>
<td>667</td>
<td>510</td>
<td>551</td>
<td>0.1169</td>
</tr>
<tr>
<td>669</td>
<td>512</td>
<td>552</td>
<td>0.1171</td>
</tr>
<tr>
<td>671</td>
<td>514</td>
<td>553</td>
<td>0.1173</td>
</tr>
<tr>
<td>673</td>
<td>516</td>
<td>554</td>
<td>0.1175</td>
</tr>
<tr>
<td>675</td>
<td>518</td>
<td>555</td>
<td>0.1177</td>
</tr>
<tr>
<td>677</td>
<td>520</td>
<td>556</td>
<td>0.1179</td>
</tr>
<tr>
<td>679</td>
<td>522</td>
<td>557</td>
<td>0.1181</td>
</tr>
<tr>
<td>681</td>
<td>524</td>
<td>558</td>
<td>0.1183</td>
</tr>
<tr>
<td>683</td>
<td>526</td>
<td>559</td>
<td>0.1185</td>
</tr>
<tr>
<td>685</td>
<td>528</td>
<td>560</td>
<td>0.1187</td>
</tr>
<tr>
<td>687</td>
<td>530</td>
<td>561</td>
<td>0.1189</td>
</tr>
<tr>
<td>689</td>
<td>532</td>
<td>562</td>
<td>0.1191</td>
</tr>
<tr>
<td>691</td>
<td>534</td>
<td>563</td>
<td>0.1193</td>
</tr>
<tr>
<td>693</td>
<td>536</td>
<td>564</td>
<td>0.1195</td>
</tr>
<tr>
<td>695</td>
<td>538</td>
<td>567</td>
<td>0.1197</td>
</tr>
<tr>
<td>696</td>
<td>539</td>
<td>567</td>
<td>0.1198</td>
</tr>
<tr>
<td>698</td>
<td>540</td>
<td>569</td>
<td>0.1199</td>
</tr>
<tr>
<td>700</td>
<td>541</td>
<td>571</td>
<td>0.1200</td>
</tr>
<tr>
<td>702</td>
<td>542</td>
<td>573</td>
<td>0.1201</td>
</tr>
<tr>
<td>704</td>
<td>543</td>
<td>575</td>
<td>0.1202</td>
</tr>
<tr>
<td>706</td>
<td>544</td>
<td>577</td>
<td>0.1203</td>
</tr>
<tr>
<td>708</td>
<td>545</td>
<td>579</td>
<td>0.1204</td>
</tr>
<tr>
<td>710</td>
<td>546</td>
<td>581</td>
<td>0.1205</td>
</tr>
<tr>
<td>712</td>
<td>547</td>
<td>583</td>
<td>0.1206</td>
</tr>
<tr>
<td>714</td>
<td>548</td>
<td>585</td>
<td>0.1207</td>
</tr>
<tr>
<td>716</td>
<td>549</td>
<td>587</td>
<td>0.1208</td>
</tr>
<tr>
<td>718</td>
<td>550</td>
<td>589</td>
<td>0.1209</td>
</tr>
<tr>
<td>720</td>
<td>551</td>
<td>591</td>
<td>0.1210</td>
</tr>
<tr>
<td>722</td>
<td>552</td>
<td>593</td>
<td>0.1211</td>
</tr>
<tr>
<td>724</td>
<td>553</td>
<td>595</td>
<td>0.1212</td>
</tr>
<tr>
<td>726</td>
<td>554</td>
<td>597</td>
<td>0.1213</td>
</tr>
<tr>
<td>728</td>
<td>555</td>
<td>599</td>
<td>0.1214</td>
</tr>
<tr>
<td>730</td>
<td>556</td>
<td>601</td>
<td>0.1215</td>
</tr>
<tr>
<td>732</td>
<td>557</td>
<td>603</td>
<td>0.1216</td>
</tr>
<tr>
<td>734</td>
<td>558</td>
<td>605</td>
<td>0.1217</td>
</tr>
<tr>
<td>736</td>
<td>559</td>
<td>607</td>
<td>0.1218</td>
</tr>
</tbody>
</table>

: TRECHO 11
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>738</td>
<td>560</td>
<td>609</td>
<td>M=7</td>
<td>LP=0,1219</td>
</tr>
<tr>
<td>740</td>
<td>561</td>
<td>611</td>
<td>M=7</td>
<td>LP=0,1220</td>
</tr>
<tr>
<td>742</td>
<td>562</td>
<td>613</td>
<td>M=7</td>
<td>LP=0,1221</td>
</tr>
<tr>
<td>744</td>
<td>563</td>
<td>615</td>
<td>M=7</td>
<td>LP=0,1222</td>
</tr>
<tr>
<td>746</td>
<td>564</td>
<td>617</td>
<td>M=7</td>
<td>LP=0,1223</td>
</tr>
<tr>
<td>748</td>
<td>565</td>
<td>619</td>
<td>M=7</td>
<td>LP=0,1224</td>
</tr>
<tr>
<td>749</td>
<td>567</td>
<td>622</td>
<td>M=7</td>
<td>LP=0,1225</td>
</tr>
</tbody>
</table>

LOADS

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>69</td>
<td>121</td>
<td>2</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>124</td>
<td>149</td>
<td>1</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>152</td>
<td>204</td>
<td>2</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>206</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>207</td>
<td>232</td>
<td>1</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>233</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>235</td>
<td>287</td>
<td>2</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>289</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>290</td>
<td>315</td>
<td>1</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>316</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>318</td>
<td>370</td>
<td>2</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>372</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>373</td>
<td>398</td>
<td>1</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>399</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>401</td>
<td>453</td>
<td>2</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>455</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>456</td>
<td>481</td>
<td>1</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>482</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>484</td>
<td>536</td>
<td>2</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>538</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>539</td>
<td>564</td>
<td>1</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
<tr>
<td>565</td>
<td></td>
<td></td>
<td>L=1</td>
<td>F=0,0,-1.12</td>
</tr>
<tr>
<td>567</td>
<td>619</td>
<td>2</td>
<td>L=1</td>
<td>F=0,0,-2.25</td>
</tr>
</tbody>
</table>

SELECT

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NT=1</td>
<td>ID=10,48,19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT=1</td>
<td>ID=62,63,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT=1</td>
<td>ID=94,96,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT=1</td>
<td>ID=178,593,83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT=1</td>
<td>ID=648</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT=1</td>
<td>ID=136,137,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT=1</td>
<td>ID=219,220,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT=1</td>
<td>ID=302,303,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT=1</td>
<td>ID=385,386,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT=1</td>
<td>ID=468,469,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td>ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>551,552,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2,18,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>40,56,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18,19,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>53,56,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>86,87,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>127,721,54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>128,722,54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>763,764,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURA 55. Modelo TAPIRI
FIGURA 56. Deformada do modelo TAPIRI para peso próprio
<table>
<thead>
<tr>
<th>JOINTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1776</td>
<td>X = 0</td>
</tr>
<tr>
<td>1777</td>
<td>X = 0</td>
</tr>
<tr>
<td>1</td>
<td>X = 40.75</td>
</tr>
<tr>
<td>1778</td>
<td>X = 40.75</td>
</tr>
<tr>
<td>20</td>
<td>X = 33.4</td>
</tr>
<tr>
<td>1797</td>
<td>X = 33.4</td>
</tr>
<tr>
<td>39</td>
<td>X = 33.4</td>
</tr>
<tr>
<td>1816</td>
<td>X = 0</td>
</tr>
<tr>
<td>58</td>
<td>X = 29.6</td>
</tr>
<tr>
<td>1817</td>
<td>X = 29.6</td>
</tr>
<tr>
<td>68</td>
<td>X = 25.7</td>
</tr>
<tr>
<td>1827</td>
<td>X = 28.5</td>
</tr>
<tr>
<td>841</td>
<td>X = 25.8</td>
</tr>
<tr>
<td>123</td>
<td>X = 24.4</td>
</tr>
<tr>
<td>1882</td>
<td>X = 24.4</td>
</tr>
<tr>
<td>896</td>
<td>X = 24.5</td>
</tr>
<tr>
<td>151</td>
<td>X = 23</td>
</tr>
<tr>
<td>1910</td>
<td>X = 23</td>
</tr>
<tr>
<td>951</td>
<td>X = 23.1</td>
</tr>
<tr>
<td>206</td>
<td>X = 21.6</td>
</tr>
<tr>
<td>1965</td>
<td>X = 21.6</td>
</tr>
<tr>
<td>1006</td>
<td>X = 21.7</td>
</tr>
<tr>
<td>234</td>
<td>X = 20.2</td>
</tr>
<tr>
<td>1993</td>
<td>X = 20.2</td>
</tr>
<tr>
<td>1061</td>
<td>X = 20.2</td>
</tr>
<tr>
<td>289</td>
<td>X = 18.7</td>
</tr>
<tr>
<td>2048</td>
<td>X = 18.7</td>
</tr>
<tr>
<td>1116</td>
<td>X = 18.8</td>
</tr>
<tr>
<td>317</td>
<td>X = 17.2</td>
</tr>
<tr>
<td>2076</td>
<td>X = 17.2</td>
</tr>
<tr>
<td>1171</td>
<td>X = 17.3</td>
</tr>
<tr>
<td>372</td>
<td>X = 15.7</td>
</tr>
<tr>
<td>2131</td>
<td>X = 15.7</td>
</tr>
<tr>
<td>1226</td>
<td>X = 15.8</td>
</tr>
<tr>
<td>400</td>
<td>X = 14.2</td>
</tr>
<tr>
<td>2159</td>
<td>X = 14.2</td>
</tr>
<tr>
<td>1281</td>
<td>X = 14.3</td>
</tr>
<tr>
<td>455</td>
<td>X = 12.7</td>
</tr>
<tr>
<td>2214</td>
<td>X = 12.7</td>
</tr>
<tr>
<td>1336</td>
<td>X = 12.7</td>
</tr>
<tr>
<td>483</td>
<td>X = 11.1</td>
</tr>
<tr>
<td>2242</td>
<td>X = 11.1</td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>1391</td>
<td>11.2</td>
</tr>
<tr>
<td>538</td>
<td>9.6</td>
</tr>
<tr>
<td>2297</td>
<td>9.6</td>
</tr>
<tr>
<td>1446</td>
<td>9.6</td>
</tr>
<tr>
<td>566</td>
<td>8</td>
</tr>
<tr>
<td>2325</td>
<td>0</td>
</tr>
<tr>
<td>1501</td>
<td>8</td>
</tr>
<tr>
<td>621</td>
<td>7</td>
</tr>
<tr>
<td>1556</td>
<td>7</td>
</tr>
<tr>
<td>676</td>
<td>6</td>
</tr>
<tr>
<td>1611</td>
<td>6</td>
</tr>
<tr>
<td>731</td>
<td>5</td>
</tr>
<tr>
<td>1666</td>
<td>5</td>
</tr>
<tr>
<td>786</td>
<td>4</td>
</tr>
<tr>
<td>1721</td>
<td>4</td>
</tr>
</tbody>
</table>

RESTRAINTS

<table>
<thead>
<tr>
<th>Restraint</th>
<th>ID</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1776</td>
<td>2325</td>
<td>1</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>119</td>
<td>2</td>
<td></td>
<td>: NOS AUXILIARES</td>
</tr>
<tr>
<td>218</td>
<td>2</td>
<td></td>
<td>: ANEL INFERIOR</td>
</tr>
<tr>
<td>40</td>
<td>56</td>
<td>2</td>
<td>R = 0,1,0,0,0 : APOIOS VERTICAIS</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td>R = 0,1,0,1,0</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td>R = 0,1,0,1,0</td>
</tr>
<tr>
<td>123</td>
<td>538</td>
<td>83</td>
<td>R = 0,1,0,1,0</td>
</tr>
<tr>
<td>841</td>
<td>1666</td>
<td>55</td>
<td>R = 0,1,0,1,0,1 : SIMETRIA EM X</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td>R = 1,0,0,0,1,1</td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td>R = 1,0,0,0,1,1</td>
</tr>
<tr>
<td>150</td>
<td>565</td>
<td>83</td>
<td>R = 1,0,0,0,1,1</td>
</tr>
<tr>
<td>895</td>
<td>1720</td>
<td>55</td>
<td>R = 1,0,0,0,1,1 : SIMETRIA EM Y</td>
</tr>
<tr>
<td>20</td>
<td>38</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>39</td>
<td>57</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>70</td>
<td>120</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>151</td>
<td>205</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>234</td>
<td>288</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>317</td>
<td>371</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>400</td>
<td>454</td>
<td>2</td>
<td>R = 1,1,1,0,1,1</td>
</tr>
<tr>
<td>483</td>
<td>537</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>566</td>
<td>620</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>621</td>
<td>675</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>676</td>
<td>730</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>731</td>
<td>785</td>
<td>2</td>
<td>R = 1,1,1,1,1</td>
</tr>
<tr>
<td>786</td>
<td>840</td>
<td>2</td>
<td>R = 1,1,1,1,1,1 : NOS AUXILIARES</td>
</tr>
<tr>
<td>787</td>
<td>839</td>
<td>2</td>
<td>R = 1,1,0,1,1,1</td>
</tr>
<tr>
<td>1721</td>
<td>1775</td>
<td>1</td>
<td>R = 1,1,0,1,1,1 : ANEL SUPERIOR ENGASTE</td>
</tr>
</tbody>
</table>

CONSTRAINTS
841 894 2 C = 68,0,68,0,68,0 I = 2,2,2,2,2
895 C = 0,122,122,122,0,0
896 1446 110 C = 0,0,123,0,123,0 I = 0,0,83,0,83,0
950 1500 110 C = 0,0,150,150,0,0 I = 0,0,83,0,83,0
898 948 2 C = 0,0,124,124,124,124 I = 0,0,1,1,1,1
952 1004 2 C = 0,0,152,152,152,152 I = 0,0,2,2,2,2
1008 1058 2 C = 0,0,207,207,207,207 I = 0,0,1,1,1,1
1062 1114 2 C = 0,0,235,235,235,235 I = 0,0,2,2,2,2
1118 1168 2 C = 0,0,290,290,290,290 I = 0,0,1,1,1,1
1172 1224 2 C = 0,0,318,318,318,318 I = 0,0,2,2,2,2
1228 1278 2 C = 0,0,373,373,373,373 I = 0,0,1,1,1,1
1282 1334 2 C = 0,0,401,401,401,401 I = 0,0,2,2,2,2
1338 1388 2 C = 0,0,456,456,456,456 I = 0,0,1,1,1,1
1392 1444 2 C = 0,0,484,484,484,484 I = 0,0,2,2,2,2
1448 1498 2 C = 0,0,539,539,539,539 I = 0,0,1,1,1,1
1502 1554 2 C = 0,0,567,567,567,567 I = 0,0,2,2,2,2
1557 1609 2 C = 0,0,622,622,622,622 I = 0,0,2,2,2,2
1612 1664 2 C = 0,0,677,677,677,677 I = 0,0,2,2,2,2
1667 1719 2 C = 0,0,732,732,732,732 I = 0,0,2,2,2,2
1722 1774 2 C = 0,0,787,0,0,0 I = 0,0,2,0,0,0

POTENTIAL
841 1775 1 T = 40

FRAME

NM = 7 NL = 1 Z = -1
1 SH = R T = 0.4,0.4 E = 28.4E6 W = 4 TC = 10E-6 G = 12.2E6
2 SH = R T = 0.9,0.9 E = 28.4E6 W = 20 TC = 10E-6 G = 12.2E6
3 SH = R T = 0.9,0.58 E = 28.4E6 W = 13 TC = 10E-6 G = 12.2E6
4 SH = R T = 0.5,0.25 E = 28.4E6 W = 3.1 TC = 10E-6 G = 12.2E6
5 SH = R T = 0.3,0.4 E = 28.4E6 W = 3 TC = 10E-6 G = 12.2E6
6 SH = R T = 0.6,0.4 E = 28.4E6 W = 6 TC = 10E-6 G = 12.2E6
7 SH = R T = 0.33,0.1 E = 28.4E6 W = 0.6875 TC = 10E-6 G = 12.2E6

1 T = 20
1 2 21 M = 1,2,3 LP = 0,1779
2 4 23 M = 1,2,3 LP = 0,1781
3 6 25 M = 1,2,3 LP = 0,1783
4 8 27 M = 1,2,3 LP = 0,1785
5 10 29 M = 1,2,3 LP = 0,1787
6 12 31 M = 1,2,3 LP = 0,1789
7 14 33 M = 1,2,3 LP = 0,1791
8 16 35 M = 1,2,3 LP = 0,1793
9 18 37 M = 1,2,3 LP = 0,1795
10 21 40 M = 6,5,3 LP = 0,1816 G = 8,1,2,2
19 21 58 M = 3,4,3 LP = 0,1798 G = 1,1,0,1
21 23 59 M = 3,4,3 LP = 0,1800 G = 1,1,0,1
23 25 60 M = 3,4,3 LP = 0,1802 G = 1,1,0,1
25 27 61 M = 3,4,3 LP = 0,1804 G = 1,1,0,1
27 29 62 M = 3,4,3 LP = 0,1806 G = 1,1,0,1
29 31 63 M = 3,4,3 LP = 0,1808 G = 1,1,0,1
31 33 64 M = 3,4,3 LP = 0,1810 G = 1,1,0,1
33 35 65 M = 3,4,3 LP = 0,1812 G = 1,1,0,1
35 37 66 M = 3,4,3 LP = 0,1814 G = 1,1,0,1
37 38 69 M = 7 NSL = 0,1 LP = 0,1817 G = 1,1,0,1
39 59 71 NSL = 0,1 LP = 0,1818 G = 3,1,0,2
43 60 77 NSL = 0,1 LP = 0,1819 G = 3,1,0,2
47 61 83 NSL = 0,1 LP = 0,1820 G = 3,1,0,2
51 62 89 NSL = 0,1 LP = 0,1821 G = 3,1,0,2
55 63 95 NSL = 0,1 LP = 0,1822 G = 3,1,0,2
59 64 101 NSL = 0,1 LP = 0,1823 G = 3,1,0,2
63 65 107 NSL = 0,1 LP = 0,1824 G = 3,1,0,2
67 66 113 NSL = 0,1 LP = 0,1825 G = 3,1,0,2
71 67 119 NSL = 0,1 LP = 0,1826 G = 1,1,0,2
73 68 69 NSL = 0,1 LP = 0,1827
74 69 71 NSL = 0,1 LP = 0,1828
75 71 73 NSL = 0,1 LP = 0,1830
76 73 75 NSL = 0,1 LP = 0,1832
77 75 77 NSL = 0,1 LP = 0,1834
78 77 79 NSL = 0,1 LP = 0,1836
79 79 81 NSL = 0,1 LP = 0,1838
80 81 83 NSL = 0,1 LP = 0,1840
81 83 85 NSL = 0,1 LP = 0,1842
82 85 87 NSL = 0,1 LP = 0,1844
83 87 89 NSL = 0,1 LP = 0,1846
84 89 91 NSL = 0,1 LP = 0,1848
85 91 93 NSL = 0,1 LP = 0,1850
86 93 95 NSL = 0,1 LP = 0,1852
87 95 97 NSL = 0,1 LP = 0,1854
88 97 99 NSL = 0,1 LP = 0,1856
89 99 101 NSL = 0,1 LP = 0,1858
90 101 103 NSL = 0,1 LP = 0,1860
91 103 105 NSL = 0,1 LP = 0,1862
92 105 107 NSL = 0,1 LP = 0,1864
93 107 109 NSL = 0,1 LP = 0,1866
94 109 111 NSL = 0,1 LP = 0,1868
95 111 113 NSL = 0,1 LP = 0,1870
96 113 115 NSL = 0,1 LP = 0,1872
97 115 117 NSL = 0,1 LP = 0,1874
98 117 119 NSL = 0,1 LP = 0,1876
99 119 121 NSL = 0,1 LP = 0,1878
100 121 122 NSL = 0,1 LP = 0,1880 : ANEL INTERMEDIARIO
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>NSL = 0,1</th>
<th>LP = 0,1828</th>
<th>G = 1,1,0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>69</td>
<td>123</td>
<td>NSL = 0,1</td>
<td>LP = 0,1830</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>103</td>
<td>71</td>
<td>124</td>
<td>NSL = 0,1</td>
<td>LP = 0,1832</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>105</td>
<td>73</td>
<td>125</td>
<td>NSL = 0,1</td>
<td>LP = 0,1834</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>107</td>
<td>75</td>
<td>126</td>
<td>NSL = 0,1</td>
<td>LP = 0,1836</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>109</td>
<td>77</td>
<td>127</td>
<td>NSL = 0,1</td>
<td>LP = 0,1838</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>111</td>
<td>79</td>
<td>128</td>
<td>NSL = 0,1</td>
<td>LP = 0,1840</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>113</td>
<td>81</td>
<td>129</td>
<td>NSL = 0,1</td>
<td>LP = 0,1842</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>115</td>
<td>83</td>
<td>130</td>
<td>NSL = 0,1</td>
<td>LP = 0,1844</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>117</td>
<td>85</td>
<td>131</td>
<td>NSL = 0,1</td>
<td>LP = 0,1846</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>119</td>
<td>87</td>
<td>132</td>
<td>NSL = 0,1</td>
<td>LP = 0,1848</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>121</td>
<td>89</td>
<td>133</td>
<td>NSL = 0,1</td>
<td>LP = 0,1850</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>123</td>
<td>91</td>
<td>134</td>
<td>NSL = 0,1</td>
<td>LP = 0,1852</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>125</td>
<td>93</td>
<td>135</td>
<td>NSL = 0,1</td>
<td>LP = 0,1854</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>127</td>
<td>95</td>
<td>136</td>
<td>NSL = 0,1</td>
<td>LP = 0,1856</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>129</td>
<td>97</td>
<td>137</td>
<td>NSL = 0,1</td>
<td>LP = 0,1858</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>131</td>
<td>99</td>
<td>138</td>
<td>NSL = 0,1</td>
<td>LP = 0,1860</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>133</td>
<td>101</td>
<td>139</td>
<td>NSL = 0,1</td>
<td>LP = 0,1862</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>135</td>
<td>103</td>
<td>140</td>
<td>NSL = 0,1</td>
<td>LP = 0,1864</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>137</td>
<td>105</td>
<td>141</td>
<td>NSL = 0,1</td>
<td>LP = 0,1866</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>139</td>
<td>107</td>
<td>142</td>
<td>NSL = 0,1</td>
<td>LP = 0,1868</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>141</td>
<td>109</td>
<td>143</td>
<td>NSL = 0,1</td>
<td>LP = 0,1870</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>143</td>
<td>111</td>
<td>144</td>
<td>NSL = 0,1</td>
<td>LP = 0,1872</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>145</td>
<td>113</td>
<td>145</td>
<td>NSL = 0,1</td>
<td>LP = 0,1874</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>147</td>
<td>115</td>
<td>146</td>
<td>NSL = 0,1</td>
<td>LP = 0,1876</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>149</td>
<td>117</td>
<td>147</td>
<td>NSL = 0,1</td>
<td>LP = 0,1878</td>
<td>G = 1,1,0,1</td>
</tr>
<tr>
<td>151</td>
<td>119</td>
<td>148</td>
<td>NSL = 0,1</td>
<td>LP = 0,1880</td>
<td>G = 1,1,0,1 : TRECHO 1</td>
</tr>
<tr>
<td>153</td>
<td>121</td>
<td>149</td>
<td>NSL = 0,1</td>
<td>LP = 0,1882</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>155</td>
<td>123</td>
<td>152</td>
<td>NSL = 0,1</td>
<td>LP = 0,1883</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>156</td>
<td>124</td>
<td>152</td>
<td>NSL = 0,1</td>
<td>LP = 0,1884</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>158</td>
<td>125</td>
<td>154</td>
<td>NSL = 0,1</td>
<td>LP = 0,1886</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>160</td>
<td>126</td>
<td>156</td>
<td>NSL = 0,1</td>
<td>LP = 0,1887</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>162</td>
<td>127</td>
<td>158</td>
<td>NSL = 0,1</td>
<td>LP = 0,1888</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>164</td>
<td>128</td>
<td>160</td>
<td>NSL = 0,1</td>
<td>LP = 0,1889</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>166</td>
<td>129</td>
<td>162</td>
<td>NSL = 0,1</td>
<td>LP = 0,1890</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>168</td>
<td>130</td>
<td>164</td>
<td>NSL = 0,1</td>
<td>LP = 0,1891</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>170</td>
<td>131</td>
<td>166</td>
<td>NSL = 0,1</td>
<td>LP = 0,1892</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>172</td>
<td>132</td>
<td>168</td>
<td>NSL = 0,1</td>
<td>LP = 0,1893</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>174</td>
<td>133</td>
<td>170</td>
<td>NSL = 0,1</td>
<td>LP = 0,1894</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>176</td>
<td>134</td>
<td>172</td>
<td>NSL = 0,1</td>
<td>LP = 0,1895</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>178</td>
<td>135</td>
<td>174</td>
<td>NSL = 0,1</td>
<td>LP = 0,1896</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>180</td>
<td>136</td>
<td>176</td>
<td>NSL = 0,1</td>
<td>LP = 0,1897</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>182</td>
<td>137</td>
<td>178</td>
<td>NSL = 0,1</td>
<td>LP = 0,1898</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>184</td>
<td>138</td>
<td>180</td>
<td>NSL = 0,1</td>
<td>LP = 0,1899</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td>186</td>
<td>139</td>
<td>182</td>
<td>NSL = 0,1</td>
<td>LP = 0,1900</td>
<td>G = 1,1,0,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NLX =</td>
<td>L =</td>
<td>G =</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>142</td>
<td>188</td>
<td>0,1</td>
<td>0,1901</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>194</td>
<td>143</td>
<td>190</td>
<td>0,1</td>
<td>0,1902</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>196</td>
<td>144</td>
<td>192</td>
<td>0,1</td>
<td>0,1903</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>198</td>
<td>145</td>
<td>194</td>
<td>0,1</td>
<td>0,1904</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>200</td>
<td>146</td>
<td>196</td>
<td>0,1</td>
<td>0,1905</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>202</td>
<td>147</td>
<td>198</td>
<td>0,1</td>
<td>0,1906</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>204</td>
<td>148</td>
<td>200</td>
<td>0,1</td>
<td>0,1907</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>206</td>
<td>149</td>
<td>202</td>
<td>0,1</td>
<td>0,1908</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>208</td>
<td>150</td>
<td>204</td>
<td>0,1</td>
<td>0,1909</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>209</td>
<td>152</td>
<td>206</td>
<td>0,1</td>
<td>0,1911</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>211</td>
<td>154</td>
<td>207</td>
<td>0,1</td>
<td>0,1913</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>213</td>
<td>156</td>
<td>208</td>
<td>0,1</td>
<td>0,1915</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>215</td>
<td>158</td>
<td>209</td>
<td>0,1</td>
<td>0,1917</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>217</td>
<td>160</td>
<td>210</td>
<td>0,1</td>
<td>0,1919</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>219</td>
<td>162</td>
<td>211</td>
<td>0,1</td>
<td>0,1921</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>221</td>
<td>164</td>
<td>212</td>
<td>0,1</td>
<td>0,1923</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>223</td>
<td>166</td>
<td>213</td>
<td>0,1</td>
<td>0,1925</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>225</td>
<td>168</td>
<td>214</td>
<td>0,1</td>
<td>0,1927</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>227</td>
<td>170</td>
<td>215</td>
<td>0,1</td>
<td>0,1929</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>229</td>
<td>172</td>
<td>216</td>
<td>0,1</td>
<td>0,1931</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>231</td>
<td>174</td>
<td>217</td>
<td>0,1</td>
<td>0,1933</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>233</td>
<td>176</td>
<td>218</td>
<td>0,1</td>
<td>0,1935</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>235</td>
<td>178</td>
<td>219</td>
<td>0,1</td>
<td>0,1937</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>237</td>
<td>180</td>
<td>220</td>
<td>0,1</td>
<td>0,1939</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>239</td>
<td>182</td>
<td>221</td>
<td>0,1</td>
<td>0,1941</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>241</td>
<td>184</td>
<td>222</td>
<td>0,1</td>
<td>0,1943</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>243</td>
<td>186</td>
<td>223</td>
<td>0,1</td>
<td>0,1945</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>245</td>
<td>188</td>
<td>224</td>
<td>0,1</td>
<td>0,1947</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>247</td>
<td>190</td>
<td>225</td>
<td>0,1</td>
<td>0,1949</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>249</td>
<td>192</td>
<td>226</td>
<td>0,1</td>
<td>0,1951</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>251</td>
<td>194</td>
<td>227</td>
<td>0,1</td>
<td>0,1953</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>253</td>
<td>196</td>
<td>228</td>
<td>0,1</td>
<td>0,1955</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>255</td>
<td>198</td>
<td>229</td>
<td>0,1</td>
<td>0,1957</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>257</td>
<td>200</td>
<td>230</td>
<td>0,1</td>
<td>0,1959</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>259</td>
<td>202</td>
<td>231</td>
<td>0,1</td>
<td>0,1961</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>261</td>
<td>204</td>
<td>232</td>
<td>0,1</td>
<td>0,1963</td>
<td>1,1,0,1</td>
</tr>
<tr>
<td>263</td>
<td>206</td>
<td>235</td>
<td>0,1</td>
<td>0,1965</td>
<td></td>
</tr>
<tr>
<td>264</td>
<td>207</td>
<td>235</td>
<td>0,1</td>
<td>0,1966</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>266</td>
<td>208</td>
<td>237</td>
<td>0,1</td>
<td>0,1967</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>268</td>
<td>209</td>
<td>239</td>
<td>0,1</td>
<td>0,1968</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>270</td>
<td>210</td>
<td>241</td>
<td>0,1</td>
<td>0,1969</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>272</td>
<td>211</td>
<td>243</td>
<td>0,1</td>
<td>0,1970</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>274</td>
<td>212</td>
<td>245</td>
<td>0,1</td>
<td>0,1971</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>276</td>
<td>213</td>
<td>247</td>
<td>0,1</td>
<td>0,1972</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>278</td>
<td>214</td>
<td>249</td>
<td>0,1</td>
<td>0,1973</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>280</td>
<td>215</td>
<td>251</td>
<td>0,1</td>
<td>0,1974</td>
<td>1,1,0,2</td>
</tr>
</tbody>
</table>
282 216 253 NSL= 0.1 LP= 0.1975 G= 1,1,0,2
284 217 255 NSL= 0.1 LP= 0.1976 G= 1,1,0,2
286 218 257 NSL= 0.1 LP= 0.1977 G= 1,1,0,2
288 219 259 NSL= 0.1 LP= 0.1978 G= 1,1,0,2
290 220 261 NSL= 0.1 LP= 0.1979 G= 1,1,0,2
292 221 263 NSL= 0.1 LP= 0.1980 G= 1,1,0,2
294 222 265 NSL= 0.1 LP= 0.1981 G= 1,1,0,2
296 223 267 NSL= 0.1 LP= 0.1982 G= 1,1,0,2
298 224 269 NSL= 0.1 LP= 0.1983 G= 1,1,0,2
300 225 271 NSL= 0.1 LP= 0.1984 G= 1,1,0,2
302 226 273 NSL= 0.1 LP= 0.1985 G= 1,1,0,2
304 227 275 NSL= 0.1 LP= 0.1986 G= 1,1,0,2
306 228 277 NSL= 0.1 LP= 0.1987 G= 1,1,0,2
308 229 279 NSL= 0.1 LP= 0.1988 G= 1,1,0,2
310 230 281 NSL= 0.1 LP= 0.1989 G= 1,1,0,2
312 231 283 NSL= 0.1 LP= 0.1990 G= 1,1,0,2
314 232 285 NSL= 0.1 LP= 0.1991 G= 1,1,0,2
316 233 287 NSL= 0.1 LP= 0.1992 : TRECHO 4
317 235 289 NSL= 0.1 LP= 0.1994 G= 1,1,0,1
319 237 290 NSL= 0.1 LP= 0.1996 G= 1,1,0,1
321 239 291 NSL= 0.1 LP= 0.1998 G= 1,1,0,1
323 241 292 NSL= 0.1 LP= 0.2000 G= 1,1,0,1
325 243 293 NSL= 0.1 LP= 0.2002 G= 1,1,0,1
327 245 294 NSL= 0.1 LP= 0.2004 G= 1,1,0,1
329 247 295 NSL= 0.1 LP= 0.2006 G= 1,1,0,1
331 249 296 NSL= 0.1 LP= 0.2008 G= 1,1,0,1
333 251 297 NSL= 0.1 LP= 0.2010 G= 1,1,0,1
335 253 298 NSL= 0.1 LP= 0.2012 G= 1,1,0,1
337 255 299 NSL= 0.1 LP= 0.2014 G= 1,1,0,1
339 257 300 NSL= 0.1 LP= 0.2016 G= 1,1,0,1
341 259 301 NSL= 0.1 LP= 0.2018 G= 1,1,0,1
343 261 302 NSL= 0.1 LP= 0.2020 G= 1,1,0,1
345 263 303 NSL= 0.1 LP= 0.2022 G= 1,1,0,1
347 265 304 NSL= 0.1 LP= 0.2024 G= 1,1,0,1
349 267 305 NSL= 0.1 LP= 0.2026 G= 1,1,0,1
351 269 306 NSL= 0.1 LP= 0.2028 G= 1,1,0,1
353 271 307 NSL= 0.1 LP= 0.2030 G= 1,1,0,1
355 273 308 NSL= 0.1 LP= 0.2032 G= 1,1,0,1
357 275 309 NSL= 0.1 LP= 0.2034 G= 1,1,0,1
359 277 310 NSL= 0.1 LP= 0.2036 G= 1,1,0,1
361 279 311 NSL= 0.1 LP= 0.2038 G= 1,1,0,1
363 281 312 NSL= 0.1 LP= 0.2040 G= 1,1,0,1
365 283 313 NSL= 0.1 LP= 0.2042 G= 1,1,0,1
367 285 314 NSL= 0.1 LP= 0.2044 G= 1,1,0,1
369 287 315 NSL= 0.1 LP= 0.2046 G= 1,1,0,1 : TRECHO 5
371 289 318 NSL= 0.1 LP= 0.2048
<p>| 372 | 290 | 318 | NSL = 0,1 | LP = 0,2049 | G = 1,1,0,2 |
| 374 | 291 | 320 | NSL = 0,1 | LP = 0,2050 | G = 1,1,0,2 |
| 376 | 292 | 322 | NSL = 0,1 | LP = 0,2051 | G = 1,1,0,2 |
| 378 | 293 | 324 | NSL = 0,1 | LP = 0,2052 | G = 1,1,0,2 |
| 380 | 294 | 326 | NSL = 0,1 | LP = 0,2053 | G = 1,1,0,2 |
| 382 | 295 | 328 | NSL = 0,1 | LP = 0,2054 | G = 1,1,0,2 |
| 384 | 296 | 330 | NSL = 0,1 | LP = 0,2055 | G = 1,1,0,2 |
| 386 | 297 | 332 | NSL = 0,1 | LP = 0,2056 | G = 1,1,0,2 |
| 388 | 298 | 334 | NSL = 0,1 | LP = 0,2057 | G = 1,1,0,2 |
| 390 | 299 | 336 | NSL = 0,1 | LP = 0,2058 | G = 1,1,0,2 |
| 392 | 300 | 338 | NSL = 0,1 | LP = 0,2059 | G = 1,1,0,2 |
| 394 | 301 | 340 | NSL = 0,1 | LP = 0,2060 | G = 1,1,0,2 |
| 396 | 302 | 342 | NSL = 0,1 | LP = 0,2061 | G = 1,1,0,2 |
| 398 | 303 | 344 | NSL = 0,1 | LP = 0,2062 | G = 1,1,0,2 |
| 400 | 304 | 346 | NSL = 0,1 | LP = 0,2063 | G = 1,1,0,2 |
| 402 | 305 | 348 | NSL = 0,1 | LP = 0,2064 | G = 1,1,0,2 |
| 404 | 306 | 350 | NSL = 0,1 | LP = 0,2065 | G = 1,1,0,2 |
| 406 | 307 | 352 | NSL = 0,1 | LP = 0,2066 | G = 1,1,0,2 |
| 408 | 308 | 354 | NSL = 0,1 | LP = 0,2067 | G = 1,1,0,2 |
| 410 | 309 | 356 | NSL = 0,1 | LP = 0,2068 | G = 1,1,0,2 |
| 412 | 310 | 358 | NSL = 0,1 | LP = 0,2069 | G = 1,1,0,2 |
| 414 | 311 | 360 | NSL = 0,1 | LP = 0,2070 | G = 1,1,0,2 |
| 416 | 312 | 362 | NSL = 0,1 | LP = 0,2071 | G = 1,1,0,2 |
| 418 | 313 | 364 | NSL = 0,1 | LP = 0,2072 | G = 1,1,0,2 |
| 420 | 314 | 366 | NSL = 0,1 | LP = 0,2073 | G = 1,1,0,2 |
| 422 | 315 | 368 | NSL = 0,1 | LP = 0,2074 | G = 1,1,0,2 |
| 424 | 316 | 370 | NSL = 0,1 | LP = 0,2075 | G = 1,1,0,2 |
| 425 | 318 | 372 | NSL = 0,1 | LP = 0,2077 | G = 1,1,0,2 |
| 427 | 320 | 373 | NSL = 0,1 | LP = 0,2079 | G = 1,1,0,2 |
| 429 | 322 | 374 | NSL = 0,1 | LP = 0,2081 | G = 1,1,0,2 |
| 431 | 324 | 375 | NSL = 0,1 | LP = 0,2083 | G = 1,1,0,2 |
| 433 | 326 | 376 | NSL = 0,1 | LP = 0,2085 | G = 1,1,0,2 |
| 435 | 328 | 377 | NSL = 0,1 | LP = 0,2087 | G = 1,1,0,2 |
| 437 | 330 | 378 | NSL = 0,1 | LP = 0,2089 | G = 1,1,0,2 |
| 439 | 332 | 379 | NSL = 0,1 | LP = 0,2091 | G = 1,1,0,2 |
| 441 | 334 | 380 | NSL = 0,1 | LP = 0,2093 | G = 1,1,0,2 |
| 443 | 336 | 381 | NSL = 0,1 | LP = 0,2095 | G = 1,1,0,2 |
| 445 | 338 | 382 | NSL = 0,1 | LP = 0,2097 | G = 1,1,0,2 |
| 447 | 340 | 383 | NSL = 0,1 | LP = 0,2099 | G = 1,1,0,2 |
| 449 | 342 | 384 | NSL = 0,1 | LP = 0,2101 | G = 1,1,0,2 |
| 451 | 344 | 385 | NSL = 0,1 | LP = 0,2103 | G = 1,1,0,2 |
| 453 | 346 | 386 | NSL = 0,1 | LP = 0,2105 | G = 1,1,0,2 |
| 455 | 348 | 387 | NSL = 0,1 | LP = 0,2107 | G = 1,1,0,2 |
| 457 | 350 | 388 | NSL = 0,1 | LP = 0,2109 | G = 1,1,0,2 |
| 459 | 352 | 389 | NSL = 0,1 | LP = 0,2111 | G = 1,1,0,2 |
| 461 | 354 | 390 | NSL = 0,1 | LP = 0,2113 | G = 1,1,0,2 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>NSL= 0,1</th>
<th>LP= 0,2115</th>
<th>G= 1,1,0,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>463</td>
<td>356</td>
<td>391</td>
<td></td>
<td></td>
</tr>
<tr>
<td>465</td>
<td>358</td>
<td>392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>467</td>
<td>360</td>
<td>393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>469</td>
<td>362</td>
<td>394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>471</td>
<td>364</td>
<td>395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>473</td>
<td>366</td>
<td>396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>475</td>
<td>368</td>
<td>397</td>
<td></td>
<td></td>
</tr>
<tr>
<td>477</td>
<td>370</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>372</td>
<td>401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>373</td>
<td>401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>482</td>
<td>374</td>
<td>403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>375</td>
<td>405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>376</td>
<td>407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>488</td>
<td>377</td>
<td>409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>378</td>
<td>411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>492</td>
<td>379</td>
<td>413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>494</td>
<td>380</td>
<td>415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>496</td>
<td>381</td>
<td>417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>382</td>
<td>419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>383</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>384</td>
<td>423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>385</td>
<td>425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>506</td>
<td>386</td>
<td>427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>387</td>
<td>429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>388</td>
<td>431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>389</td>
<td>433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>390</td>
<td>435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>391</td>
<td>437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>392</td>
<td>439</td>
<td></td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>393</td>
<td>441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>394</td>
<td>443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>395</td>
<td>445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>396</td>
<td>447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>397</td>
<td>449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>398</td>
<td>451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>399</td>
<td>453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>401</td>
<td>455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>403</td>
<td>456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>405</td>
<td>457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>407</td>
<td>458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>409</td>
<td>459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>543</td>
<td>411</td>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>545</td>
<td>413</td>
<td>461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>547</td>
<td>415</td>
<td>462</td>
<td></td>
<td></td>
</tr>
<tr>
<td>549</td>
<td>417</td>
<td>463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>419</td>
<td>464</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

: TRECHO 7

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>NSL= 0,1</th>
<th>LP= 0,2131</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>469</td>
<td>362</td>
<td>394</td>
<td></td>
<td></td>
</tr>
<tr>
<td>471</td>
<td>364</td>
<td>395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>473</td>
<td>366</td>
<td>396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>475</td>
<td>368</td>
<td>397</td>
<td></td>
<td></td>
</tr>
<tr>
<td>477</td>
<td>370</td>
<td>398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>479</td>
<td>372</td>
<td>401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>373</td>
<td>401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>482</td>
<td>374</td>
<td>403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>484</td>
<td>375</td>
<td>405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>376</td>
<td>407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>488</td>
<td>377</td>
<td>409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>490</td>
<td>378</td>
<td>411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>492</td>
<td>379</td>
<td>413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>494</td>
<td>380</td>
<td>415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>496</td>
<td>381</td>
<td>417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>382</td>
<td>419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>383</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>384</td>
<td>423</td>
<td></td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>385</td>
<td>425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>506</td>
<td>386</td>
<td>427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>387</td>
<td>429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>388</td>
<td>431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>389</td>
<td>433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>390</td>
<td>435</td>
<td></td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>391</td>
<td>437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>392</td>
<td>439</td>
<td></td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>393</td>
<td>441</td>
<td></td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>394</td>
<td>443</td>
<td></td>
<td></td>
</tr>
<tr>
<td>524</td>
<td>395</td>
<td>445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>396</td>
<td>447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>397</td>
<td>449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>398</td>
<td>451</td>
<td></td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>399</td>
<td>453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>401</td>
<td>455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>403</td>
<td>456</td>
<td></td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>405</td>
<td>457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>407</td>
<td>458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>409</td>
<td>459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>543</td>
<td>411</td>
<td>460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>545</td>
<td>413</td>
<td>461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>547</td>
<td>415</td>
<td>462</td>
<td></td>
<td></td>
</tr>
<tr>
<td>549</td>
<td>417</td>
<td>463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>419</td>
<td>464</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

: TRECHO 8
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>553</td>
<td>421</td>
<td>465</td>
<td>NSL = 0,1</td>
<td>LP = 0,2180</td>
</tr>
<tr>
<td>555</td>
<td>423</td>
<td>466</td>
<td>NSL = 0,1</td>
<td>LP = 0,2182</td>
</tr>
<tr>
<td>557</td>
<td>425</td>
<td>467</td>
<td>NSL = 0,1</td>
<td>LP = 0,2184</td>
</tr>
<tr>
<td>559</td>
<td>427</td>
<td>468</td>
<td>NSL = 0,1</td>
<td>LP = 0,2186</td>
</tr>
<tr>
<td>561</td>
<td>429</td>
<td>469</td>
<td>NSL = 0,1</td>
<td>LP = 0,2188</td>
</tr>
<tr>
<td>563</td>
<td>431</td>
<td>470</td>
<td>NSL = 0,1</td>
<td>LP = 0,2190</td>
</tr>
<tr>
<td>565</td>
<td>433</td>
<td>471</td>
<td>NSL = 0,1</td>
<td>LP = 0,2192</td>
</tr>
<tr>
<td>567</td>
<td>435</td>
<td>472</td>
<td>NSL = 0,1</td>
<td>LP = 0,2194</td>
</tr>
<tr>
<td>569</td>
<td>437</td>
<td>473</td>
<td>NSL = 0,1</td>
<td>LP = 0,2196</td>
</tr>
<tr>
<td>571</td>
<td>439</td>
<td>474</td>
<td>NSL = 0,1</td>
<td>LP = 0,2198</td>
</tr>
<tr>
<td>573</td>
<td>441</td>
<td>475</td>
<td>NSL = 0,1</td>
<td>LP = 0,2200</td>
</tr>
<tr>
<td>575</td>
<td>443</td>
<td>476</td>
<td>NSL = 0,1</td>
<td>LP = 0,2202</td>
</tr>
<tr>
<td>577</td>
<td>445</td>
<td>477</td>
<td>NSL = 0,1</td>
<td>LP = 0,2204</td>
</tr>
<tr>
<td>579</td>
<td>447</td>
<td>478</td>
<td>NSL = 0,1</td>
<td>LP = 0,2206</td>
</tr>
<tr>
<td>581</td>
<td>449</td>
<td>479</td>
<td>NSL = 0,1</td>
<td>LP = 0,2208</td>
</tr>
<tr>
<td>583</td>
<td>451</td>
<td>480</td>
<td>NSL = 0,1</td>
<td>LP = 0,2210</td>
</tr>
<tr>
<td>585</td>
<td>453</td>
<td>481</td>
<td>NSL = 0,1</td>
<td>LP = 0,2212</td>
</tr>
<tr>
<td>587</td>
<td>455</td>
<td>484</td>
<td>NSL = 0,1</td>
<td>LP = 0,2214</td>
</tr>
<tr>
<td>588</td>
<td>456</td>
<td>484</td>
<td>NSL = 0,1</td>
<td>LP = 0,2215</td>
</tr>
<tr>
<td>590</td>
<td>457</td>
<td>486</td>
<td>NSL = 0,1</td>
<td>LP = 0,2216</td>
</tr>
<tr>
<td>592</td>
<td>458</td>
<td>488</td>
<td>NSL = 0,1</td>
<td>LP = 0,2217</td>
</tr>
<tr>
<td>594</td>
<td>459</td>
<td>490</td>
<td>NSL = 0,1</td>
<td>LP = 0,2218</td>
</tr>
<tr>
<td>596</td>
<td>460</td>
<td>492</td>
<td>NSL = 0,1</td>
<td>LP = 0,2219</td>
</tr>
<tr>
<td>598</td>
<td>461</td>
<td>494</td>
<td>NSL = 0,1</td>
<td>LP = 0,2220</td>
</tr>
<tr>
<td>600</td>
<td>462</td>
<td>496</td>
<td>NSL = 0,1</td>
<td>LP = 0,2221</td>
</tr>
<tr>
<td>602</td>
<td>463</td>
<td>498</td>
<td>NSL = 0,1</td>
<td>LP = 0,2222</td>
</tr>
<tr>
<td>604</td>
<td>464</td>
<td>500</td>
<td>NSL = 0,1</td>
<td>LP = 0,2223</td>
</tr>
<tr>
<td>606</td>
<td>465</td>
<td>502</td>
<td>NSL = 0,1</td>
<td>LP = 0,2224</td>
</tr>
<tr>
<td>608</td>
<td>466</td>
<td>504</td>
<td>NSL = 0,1</td>
<td>LP = 0,2225</td>
</tr>
<tr>
<td>610</td>
<td>467</td>
<td>506</td>
<td>NSL = 0,1</td>
<td>LP = 0,2226</td>
</tr>
<tr>
<td>612</td>
<td>468</td>
<td>508</td>
<td>NSL = 0,1</td>
<td>LP = 0,2227</td>
</tr>
<tr>
<td>614</td>
<td>469</td>
<td>510</td>
<td>NSL = 0,1</td>
<td>LP = 0,2228</td>
</tr>
<tr>
<td>616</td>
<td>470</td>
<td>512</td>
<td>NSL = 0,1</td>
<td>LP = 0,2229</td>
</tr>
<tr>
<td>618</td>
<td>471</td>
<td>514</td>
<td>NSL = 0,1</td>
<td>LP = 0,2230</td>
</tr>
<tr>
<td>620</td>
<td>472</td>
<td>516</td>
<td>NSL = 0,1</td>
<td>LP = 0,2231</td>
</tr>
<tr>
<td>622</td>
<td>473</td>
<td>518</td>
<td>NSL = 0,1</td>
<td>LP = 0,2232</td>
</tr>
<tr>
<td>624</td>
<td>474</td>
<td>520</td>
<td>NSL = 0,1</td>
<td>LP = 0,2233</td>
</tr>
<tr>
<td>626</td>
<td>475</td>
<td>522</td>
<td>NSL = 0,1</td>
<td>LP = 0,2234</td>
</tr>
<tr>
<td>628</td>
<td>476</td>
<td>524</td>
<td>NSL = 0,1</td>
<td>LP = 0,2235</td>
</tr>
<tr>
<td>630</td>
<td>477</td>
<td>526</td>
<td>NSL = 0,1</td>
<td>LP = 0,2236</td>
</tr>
<tr>
<td>632</td>
<td>478</td>
<td>528</td>
<td>NSL = 0,1</td>
<td>LP = 0,2237</td>
</tr>
<tr>
<td>634</td>
<td>479</td>
<td>530</td>
<td>NSL = 0,1</td>
<td>LP = 0,2238</td>
</tr>
<tr>
<td>636</td>
<td>480</td>
<td>532</td>
<td>NSL = 0,1</td>
<td>LP = 0,2239</td>
</tr>
<tr>
<td>638</td>
<td>481</td>
<td>534</td>
<td>NSL = 0,1</td>
<td>LP = 0,2240</td>
</tr>
<tr>
<td>640</td>
<td>482</td>
<td>536</td>
<td>NSL = 0,1</td>
<td>LP = 0,2241</td>
</tr>
<tr>
<td>641</td>
<td>484</td>
<td>538</td>
<td>NSL = 0,1</td>
<td>LP = 0,2243</td>
</tr>
</tbody>
</table>
643 486 539 NSL = 0,1 \quad \text{LP} = 0,2245 \quad \text{G} = 1,1,0,1
645 488 540 NSL = 0,1 \quad \text{LP} = 0,2247 \quad \text{G} = 1,1,0,1
647 490 541 NSL = 0,1 \quad \text{LP} = 0,2249 \quad \text{G} = 1,1,0,1
649 492 542 NSL = 0,1 \quad \text{LP} = 0,2251 \quad \text{G} = 1,1,0,1
651 494 543 NSL = 0,1 \quad \text{LP} = 0,2253 \quad \text{G} = 1,1,0,1
653 496 544 NSL = 0,1 \quad \text{LP} = 0,2255 \quad \text{G} = 1,1,0,1
655 498 545 NSL = 0,1 \quad \text{LP} = 0,2257 \quad \text{G} = 1,1,0,1
657 500 546 NSL = 0,1 \quad \text{LP} = 0,2259 \quad \text{G} = 1,1,0,1
659 502 547 NSL = 0,1 \quad \text{LP} = 0,2261 \quad \text{G} = 1,1,0,1
661 504 548 NSL = 0,1 \quad \text{LP} = 0,2263 \quad \text{G} = 1,1,0,1
663 506 549 NSL = 0,1 \quad \text{LP} = 0,2265 \quad \text{G} = 1,1,0,1
665 508 550 NSL = 0,1 \quad \text{LP} = 0,2267 \quad \text{G} = 1,1,0,1
667 510 551 NSL = 0,1 \quad \text{LP} = 0,2269 \quad \text{G} = 1,1,0,1
669 512 552 NSL = 0,1 \quad \text{LP} = 0,2271 \quad \text{G} = 1,1,0,1
671 514 553 NSL = 0,1 \quad \text{LP} = 0,2273 \quad \text{G} = 1,1,0,1
673 516 554 NSL = 0,1 \quad \text{LP} = 0,2275 \quad \text{G} = 1,1,0,1
675 518 555 NSL = 0,1 \quad \text{LP} = 0,2277 \quad \text{G} = 1,1,0,1
677 520 556 NSL = 0,1 \quad \text{LP} = 0,2279 \quad \text{G} = 1,1,0,1
679 522 557 NSL = 0,1 \quad \text{LP} = 0,2281 \quad \text{G} = 1,1,0,1
681 524 558 NSL = 0,1 \quad \text{LP} = 0,2283 \quad \text{G} = 1,1,0,1
683 526 559 NSL = 0,1 \quad \text{LP} = 0,2285 \quad \text{G} = 1,1,0,1
685 528 560 NSL = 0,1 \quad \text{LP} = 0,2287 \quad \text{G} = 1,1,0,1
687 530 561 NSL = 0,1 \quad \text{LP} = 0,2289 \quad \text{G} = 1,1,0,1
689 532 562 NSL = 0,1 \quad \text{LP} = 0,2291 \quad \text{G} = 1,1,0,1
691 534 563 NSL = 0,1 \quad \text{LP} = 0,2293 \quad \text{G} = 1,1,0,1
693 536 564 NSL = 0,1 \quad \text{LP} = 0,2295 \quad \text{G} = 1,1,0,1
695 538 567 NSL = 0,1 \quad \text{LP} = 0,2297
696 539 567 NSL = 0,1 \quad \text{LP} = 0,2298 \quad \text{G} = 1,1,0,2
698 540 569 NSL = 0,1 \quad \text{LP} = 0,2299 \quad \text{G} = 1,1,0,2
700 541 571 NSL = 0,1 \quad \text{LP} = 0,2300 \quad \text{G} = 1,1,0,2
702 542 573 NSL = 0,1 \quad \text{LP} = 0,2301 \quad \text{G} = 1,1,0,2
704 543 575 NSL = 0,1 \quad \text{LP} = 0,2302 \quad \text{G} = 1,1,0,2
706 544 577 NSL = 0,1 \quad \text{LP} = 0,2303 \quad \text{G} = 1,1,0,2
708 545 579 NSL = 0,1 \quad \text{LP} = 0,2304 \quad \text{G} = 1,1,0,2
710 546 581 NSL = 0,1 \quad \text{LP} = 0,2305 \quad \text{G} = 1,1,0,2
712 547 583 NSL = 0,1 \quad \text{LP} = 0,2306 \quad \text{G} = 1,1,0,2
714 548 585 NSL = 0,1 \quad \text{LP} = 0,2307 \quad \text{G} = 1,1,0,2
716 549 587 NSL = 0,1 \quad \text{LP} = 0,2308 \quad \text{G} = 1,1,0,2
718 550 589 NSL = 0,1 \quad \text{LP} = 0,2309 \quad \text{G} = 1,1,0,2
720 551 591 NSL = 0,1 \quad \text{LP} = 0,2310 \quad \text{G} = 1,1,0,2
722 552 593 NSL = 0,1 \quad \text{LP} = 0,2311 \quad \text{G} = 1,1,0,2
724 553 595 NSL = 0,1 \quad \text{LP} = 0,2312 \quad \text{G} = 1,1,0,2
726 554 597 NSL = 0,1 \quad \text{LP} = 0,2313 \quad \text{G} = 1,1,0,2
728 555 599 NSL = 0,1 \quad \text{LP} = 0,2314 \quad \text{G} = 1,1,0,2
730 556 601 NSL = 0,1 \quad \text{LP} = 0,2315 \quad \text{G} = 1,1,0,2
732 557 603 NSL = 0,1 \quad \text{LP} = 0,2316 \quad \text{G} = 1,1,0,2

: TRECHO 11
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>NSL = 0,1</th>
<th>LP</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>734</td>
<td>558</td>
<td>605</td>
<td>0.2317</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>736</td>
<td>559</td>
<td>607</td>
<td>0.2318</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>738</td>
<td>560</td>
<td>609</td>
<td>0.2319</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>740</td>
<td>561</td>
<td>611</td>
<td>0.2320</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>742</td>
<td>562</td>
<td>613</td>
<td>0.2321</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>744</td>
<td>563</td>
<td>615</td>
<td>0.2322</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>746</td>
<td>564</td>
<td>617</td>
<td>0.2323</td>
<td>1,1,0,2</td>
</tr>
<tr>
<td>748</td>
<td>565</td>
<td>619</td>
<td>0.2324</td>
<td>: TRECHO 12</td>
</tr>
<tr>
<td>749</td>
<td>567</td>
<td>622</td>
<td>0.2325</td>
<td>26,1,2,2</td>
</tr>
<tr>
<td>776</td>
<td>622</td>
<td>677</td>
<td>0.2325</td>
<td>26,1,2,2</td>
</tr>
<tr>
<td>803</td>
<td>677</td>
<td>732</td>
<td>0.2325</td>
<td>26,1,2,2</td>
</tr>
<tr>
<td>830</td>
<td>732</td>
<td>787</td>
<td>0.2325</td>
<td>26,1,2,2</td>
</tr>
</tbody>
</table>

SHELL

NM = 1 Z = -1.0,-1.456 T = 0.1
1 E = 28.4E06 U = 1/6 W = 25 TA = 10E-6

857 JQ = 841,896,842,897 M = 1 ET = 0 TZ = 20 TH = 0.055 G = 1.54
911 JQ = 896,951,897,952 TZ = 20 TH = 0.055 G = 1.54
965 JQ = 951,1006,952,1007 TZ = 20 TH = 0.055 G = 1.54
1019 JQ = 1006,1061,1007,1062 TZ = 20 TH = 0.055 G = 1.54
1073 JQ = 1061,1116,1062,1117 TZ = 20 TH = 0.055 G = 1.54
1127 JQ = 1116,1171,1117,1172 TZ = 20 TH = 0.055 G = 1.54
1181 JQ = 1171,1226,1172,1227 TZ = 20 TH = 0.055 G = 1.54
1235 JQ = 1226,1281,1227,1282 TZ = 20 TH = 0.055 G = 1.54
1289 JQ = 1281,1336,1282,1337 TZ = 20 TH = 0.055 G = 1.54
1343 JQ = 1336,1391,1337,1392 TZ = 20 TH = 0.055 G = 1.54
1397 JQ = 1391,1446,1392,1447 TZ = 20 TH = 0.055 G = 1.54
1451 JQ = 1446,1501,1447,1502 TZ = 20 TH = 0.055 G = 1.54
1505 JQ = 1501,1556,1502,1557 TZ = 20 TH = 0.055 G = 1.54
1559 JQ = 1556,1611,1557,1612 TZ = 20 TH = 0.055 G = 1.54
1613 JQ = 1611,1666,1612,1667 TZ = 20 TH = 0.055 G = 1.54
1667 JQ = 1666,1721,1667,1722 TZ = 20 TH = 0.055 G = 1.54

LOADS

1722 1774 2 L = 1 F = 0.0,-2.1

SELECT

NT = 1 ID = 567,619,2
NT = 1 ID = 1502,1554,2
NT = 1 ID = 10,48,19
NT = 1 ID = 62,63,1
NT = 1 ID = 94,96,1
NT = 1 ID = 178,593,83
NT = 1 ID = 648
NT = 1 ID = 703
NT = 1 ID = 758
<table>
<thead>
<tr>
<th>NT</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>813</td>
</tr>
<tr>
<td>1</td>
<td>136,137,1</td>
</tr>
<tr>
<td>1</td>
<td>219,220,1</td>
</tr>
<tr>
<td>1</td>
<td>302,303,1</td>
</tr>
<tr>
<td>1</td>
<td>385,386,1</td>
</tr>
<tr>
<td>1</td>
<td>468,469,1</td>
</tr>
<tr>
<td>1</td>
<td>551,552,1</td>
</tr>
<tr>
<td>2</td>
<td>2,18,2</td>
</tr>
<tr>
<td>2</td>
<td>40,56,2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>27,28</td>
</tr>
<tr>
<td>5</td>
<td>53,56,1</td>
</tr>
<tr>
<td>5</td>
<td>86,87,1</td>
</tr>
<tr>
<td>5</td>
<td>127,721,54</td>
</tr>
<tr>
<td>5</td>
<td>128,722,54</td>
</tr>
<tr>
<td>5</td>
<td>763,764,1</td>
</tr>
<tr>
<td>5</td>
<td>790,791,1</td>
</tr>
<tr>
<td>5</td>
<td>817,818,1</td>
</tr>
<tr>
<td>5</td>
<td>844,845,1</td>
</tr>
<tr>
<td>6</td>
<td>881,1691,54</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CASQUEL</td>
<td>UNDEFORMED SHAPE</td>
</tr>
<tr>
<td>WIRE FRAME</td>
<td></td>
</tr>
</tbody>
</table>

FIGURA 57. Modelo CASQUEL
FIGURA 58. Deformada do modelo CASQUEL para peso próprio
FIGURA 59. Deformada do modelo CASQUEL para variação de temperatura
FIGURA 60. Deformada do modelo CASQUEL para sobrecarga $q = 2,0 \text{ kN/m}^2$
BIBLIOGRAFIA

ALMEIDA, L. R. *Parabolóides elípticos — monolíticos e pré-moldados — sobre base retangular*. São Carlos, 1982. Dissertação (Mestrado) — Escola de Engenharia de São Carlos, Universidade de São Paulo.

PEARCE, P. *Structure in nature is a strategy for design*. MIT, 1978.

